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In recent years, the accelerated deployment of renewable electricity generation resources, 

especially wind and photovoltaic (PV) solar, has added challenges to the operation and 

planning of the power grid.  One of the challenges is that the variability of solar and wind 

power output may increase the variation of the load that must be followed by dispatchable 

resources and increase the ramping capacity needs. Moreover, the decision about the 

configuration of a PV solar generation systems has operational and economic implications 

because peak solar energy production does not always precisely occur when the wholesale 

electricity prices of the system are highest. Therefore, as the renewable capacity levels 

grow, it becomes increasingly important to examine the potential impacts on the system 

cost and portfolio of conventional generating units to respond to the intermittent nature of 

some renewable generation technologies. Three related analyses explored in this 

dissertation address some of the challenges of integrating utility-scale PV solar and wind 

projects into a power system using a case study for Indiana. 

The first analysis identifies the optimal azimuth and tilt angles of solar PV installations that 

alternatively maximize the annual electricity generation or the economic value of the 

resource. The economic implications of the configuration of solar PV installations within 

Indiana are estimated based on wholesale prices of electricity and simulated solar output 

for different combinations of angles and types of array installations. The results show that 

solar projects across the state would need to have azimuth angles within the 177 and 182 

degrees range to obtain maximum annual energy and 180 to 190.5 degrees to maximize 

annual value, independently of their array types. Furthermore, southern and northwestern 

zones showed the highest impacts from using an optimal angle configuration of the solar 

installations. Nevertheless, on average, the benefits in annual electricity generated or 
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economic value from their reconfiguration across the state are minor, amounting to less 

than one percent.  

The second analysis explores the effects of additional solar and wind power investments 

on the 2035 requirements for baseload and peaking generation capacity, the amount of 

energy supplied by various types of generation technologies and the costs of Indiana’s 

electric supply system. From a capacity planning and unit commitment/dispatch 

perspective, the results of this analysis indicated that with a portfolio that includes more 

solar and/or wind power generation, there would be need to add new peaking generation 

units. However, the total need for additional peaking resources declines as more 

renewables are added to the generation mix. Because Indiana still heavily relies on coal 

and other baseload resources to generate electricity, no new baseload capacity is required 

in the future. Generally, additions of PV solar and wind capacity amplify the variation in 

load net of renewable generation and create greater needs for ramping services from 

conventional units. However, results of the analysis show that the existing portfolio of 

conventional generation resources in Indiana would have sufficient operational flexibility 

to be able to accommodate ramping requirements even with PV solar and wind capacity 

penetration levels as high as 30% of total electricity generation. However, at those levels 

of renewables capacity there are a times during the year when the optimal operational 

strategy is to curtail solar and wind generation. From a technical perspective, the results 

indicated that larger thermal generating units are used more for load following and turned 

on and off (cycled) more frequently with the additional renewables than without them but 

mainly during days with low levels of demand and high levels of generation from 

renewable technologies. From the cost perspective, the results of the model support the 

idea that it would be cheaper in the long-term to invest in a combination of solar and wind 

generation resources than in solar generation resources alone. Moreover, the reductions in 

variable costs, driven by the zero variable cost added to the system by the additional solar 

and wind capacity, were not sufficient to outweigh the increases in capital costs regardless 

of the levels of capacity additions.  

For the third analysis, the proposed capacity expansion model was used to estimate the 

value of capacity of PV solar and PV solar in combination with wind capacity in terms of 
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baseload/peaking resources from a deterministic system peak load reliability perspective 

and for various penetration levels of these resources. The capacity values of solar, which 

refer to the contribution of PV solar plants to reliably meeting the system peak demand, for 

all the wind capacity levels analyzed, fall as the amount of solar capacity increases. This is 

because as solar generation increases and closely coincides with the occurrence of the 

system peak load, there is a shift of the peak load net of renewable generation time to later 

afternoon hours, when solar installations begin to reduce their production, therefore 

decreasing their contribution to reliably meeting system peak demand. The calculated solar 

capacity values are between 2.7% and 67.3% of the corresponding solar nameplate capacity 

considering all zones and types of PV solar arrays in Indiana, and vary with the level of 

solar penetration. The range of values obtained are in line with the ones found in other 

studies using stochastic reliability-based methods. 

This dissertation contributes to the literature on the interaction between PV solar with other 

generation resources and to their economic, operational and policy implications. 

Furthermore, it provides another decision-making tool from a planning perspective for 

policymakers, utility companies and project developers. 
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CHAPTER 1. INTRODUCTION 

1.1 Introduction 

Renewable energy sources, particularly wind and solar electricity generation, have gained 

momentum due to their technological progress, reductions in technology costs and the 

increasing environmental concerns regarding greenhouse gas (GHG) emissions from 

generation with fossil fuels (i.e. coal, natural gas, and oil). In fact, environmental 

regulations proposed by the U.S. Environmental Protection Agency (EPA) like the 

Mercury and Air Toxics Rule (MATS), which went into effect in 2015, are expected to 

result in increases in electric generating capacity for renewable technologies and 

accelerated retirements of fossil fuel power plants, especially coal-fired plants (EIA, 2015).  

In recent years, solar photovoltaic (PV) generation has grown more rapidly than other 

renewables in percentage terms, albeit starting from a small base. In the United States, solar 

photovoltaic energy generating capacity increased about 67% from 2015 to 2016 and 

projected to have the highest annual growth rate (6.4%) among all the renewable energy 

sources for the 2016-2040 period. In that sense, wind generating capacity only increased 

13% from 2015 to 2016 and was expected to annually grow at slower growth rate than 

solar (2.6%) for the same forecast period. However, despite the rapid growth of solar PV 

generation capacity, this resource represented only 4.1% of the total electricity generation 

from renewables in 2015; meanwhile, wind generation continues to play a leading role, 

contributing 37% of that total (EIA, 2017).  

In Indiana, renewable resources contributed less than 2% of the total energy consumed in 

the 1990s. However, the recent expansion in ethanol for biofuel and wind for electricity 

generation increased renewable energy’s share to over 5% for the first time in 2012 and 

has since continued above that level mainly due to the increase in biofuels consumption. 

On the other hand, the contribution of renewable energy to Indiana’s annual electricity 

generation has also shown a significant change in recent years. Starting in 2008, with the 

arrival of utility-scale wind and solar energy projects, this contribution grew from 0.5% in 

2007 to 5.3% in 2015, with wind accounting for about 82% of that increase. Later, solar 
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photovoltaic (PV) electricity generation also showed a significant increase, going from 

almost none in 2011 to 156 GWh in 2015 which represented about 0.2% of the state’s total 

electricity generation (SUFG, 2017a).  

The accelerated deployment of renewable resources especially wind and PV solar power is 

a result of a combination of factors including government investments, infrastructure 

development, and federal and state incentives. According to the U.S. Department of Energy 

(DOE, 2016), decades of investments by federal government and industry have contributed 

to installation cost reductions of 41% for land based wind and 64% for utility-scale PV 

systems in the U.S. observed from 2008 to 2015. In addition to declining installation costs, 

the rapid expansion of these resources was also due to the availability of state and federal 

financial incentives (e.g. investment tax credits or ITCs), and state renewable portfolio 

standards (RPS) with specific provisions for wind and solar technologies (SUFG, 2017a; 

Obi and Bass, 2016).  

Based on these factors and the speed of adoption of solar PV generation, electricity 

generated from this resource may grow more in the future. Therefore, it is becoming 

increasingly important to understand how the composition of conventional generation 

capacity changes as the renewable capacity levels grow (Bushnell and Novan, 2018). 

Consequently, the efforts of this study focus mainly on estimating the system level impacts 

of incorporating more solar generation, by itself and in combination with wind power, into 

the electricity supply system. 

According to Boroujeni et al. (2012), modern electricity systems are complex, integrated 

and very large. However, they can be analyzed by focusing on appropriate subsystems or 

functional areas. These subsystems are generation, transmission and distribution. The 

function of the generation system is to make sure that the total installed capacity in a system 

is sufficient and consistent to meet a variable load/demand at any time, at a reasonable cost. 

Not meeting the demand at every moment would cause huge loss of welfare to society due 

to load shedding. Meanwhile, transmission and distribution systems need to be reliable in 

making sure that electricity can be delivered from the generator to the consumers. This 
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dissertation focuses the analysis on the generation subsystem from a resource planning 

perspective. 

Unlike conventional dispatchable generators that can be turned on or off to respond to 

changes in demand, solar photovoltaic is an intermittent energy resource with electricity 

generation that depends on the time of day, season and weather patterns (NREL, 2013). In 

recent years, the higher penetration of intermittent resources has added uncertainty and 

challenges to the operation and planning of the power grid. Therefore, due to the increase 

penetration of this resource, power systems are expected to have changes in dynamic and 

operational characteristics (Eftekharnejad et al., 2013). 

Some of the challenges of integrating PV solar power generation into the power grid are to 

determine the impacts on system cost and the capacity needs for conventional generators 

to provide the flexibility to compensate for its intermittent nature. The variability of solar 

power output tends to increase system variation and alter the optimal mix of other 

generating units. That is, integration of solar power may cause the load that must be 

followed by the dispatchable generating resources to be more variable and increase the 

ramping capacity needs. 

Another challenge faced by system planners and operators is related to the absence of 

coincidence between both PV solar and wind generation with the system load. For example, 

PV solar generation is greatest during the midday hours when demand is generally not at 

its peak level. Meanwhile, wind generation is even less coincident because its highest 

generation levels occur during the night or early morning when load usually is at its lowest 

levels. Moreover, according to Rhodes et al. (2014), optimal placement (azimuth and tilt) 

of solar PV systems have an impact on their total energy production, peak power 

production and economic value of that electricity generated. The decision about the 

orientation and tilt angle for the design of a PV solar generation systems has operational 

and economic implications because peak solar energy production does not always precisely 

align with maximum grid load or occur when the wholesale electricity prices of the system 

are highest. 
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This dissertation addresses the challenges of integrating renewable resources (PV solar and 

wind) into a power system in order to meet future energy demand using a case study for 

Indiana. The first part of this analysis assesses the economic implications of changing the 

design of PV solar systems. The implications are estimated based on wholesale prices of 

electricity and the simulated PV solar outputs for different system configurations, as well 

as on types of array installations that are representative of the predominant technology used 

by large PV-system owners within Indiana. This estimation accounts for the impact of 

weather variability by modeling PV solar generation of projects located in different 

locations across the state. In the end, the results of this section contribute to identifying the 

appropriate economically optimal system design of solar plants that maximizes the annual 

economic value of this resource, as opposed to annual electricity generation. 

The second part focuses in estimating the capacity and costs impacts of integrating different 

levels of renewable generation capacity in the need of conventional generating resources 

in order to meet future load and ramping requirements. Specifically, the objective is to 

determine the impacts on capacity needs of two types of generic generation resources and 

to assess system wide impacts for energy and costs for different solar and wind capacity 

levels. This study uses the framework developed by Davis et al. (2013) that measured the 

impact of wind generation on the needs for other generation resources and on total system 

costs in Indiana.  

The third part of the analysis focuses on assessing the value of PV solar and PV solar in 

combination with wind capacity and the impact of integrating these resources on the need 

for conventional generating technologies from a reliability perspective. That is, since solar 

generation is a variable source of electricity due to its dependency on sunlight and cannot 

be controlled like conventional power plants, it is important to determine its capacity 

contribution to the system as it is compared to a more dependable generating resource. 

Therefore, the work on the value of capacity is developed in the context of the available 

portfolio of generation resources and system peak load.  

This research contributes to the literature on the interaction between PV solar with other 

generation resources and to their policy implications. Additionally, this analysis aims to 
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provide insight on how to improve the efficiency and resource planning of the whole 

system.   

This dissertation is organized in five chapters. Chapter two presents a theoretical and 

technical background of solar PV generation and also a review of literature relevant to this 

research topic. Chapter three provides detail information about the source of the data and 

methodology used to achieve the proposed objectives. Chapter four summarizes the 

findings, compares and contrasts the results of various scenarios. The final chapter 

discusses the results, provides concluding remarks, limitations of the research and 

suggestions for future studies.  
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CHAPTER 2. LITERATURE REVIEW 

This chapter presents a review of existing literature regarding PV solar power, system 

integration of intermittent resources and methodologies previously used to address some 

of the challenges mentioned in Chapter 1. The first part of the chapter introduces the 

discussion with definitions, technical explanation and current situation of solar PV power. 

The second part offers a background of various research approaches that are related to the 

models proposed in this research. The review of these studies provides a better 

understanding and support to this work.  

2.1 PV Solar power: A general review 

The sun is a powerful renewable source of energy that can be used to heat, cool, and light 

homes and business. There are different solar technologies that convert sunlight to usable 

energy for buildings, but solar photovoltaics (PV) is the most commonly used technology 

to generate electricity. PV gets its name from the process of converting light (photons) 

directly into electricity (voltage) (NREL, 2018a).  

A single PV device is known as a cell and an individual cell typically produces about 1 or 

2 watts of power. PV cells are connected together in chains forming modules or panels and 

then several modules can be connected to form arrays. One or more arrays can be connected 

to the electrical grid as part of a PV system. Aside from modules and arrays, a PV system 

also includes mounting structures, inverters (convert DC electricity to AC), cabling, and 

other components (EERE, 2013).   

Solar project developers and electric utilities are using solar PV on a massive scale to power 

cities and towns (NREL, 2018a). According to Solar Energy Industries Association (SEIA, 

2015) the robust utility-scale market led Indiana to rank 14th in the nation regarding 

installed solar capacity in 2014. In that year, the state added more than 50 megawatts (MW) 

of new installations for the second straight year. These additions were mainly utility-scale 

installations, but commercial installations increased, too.  
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In Indiana, favorable incentives that contributed to the rapid deployment of utility-scale 

PV solar power projects include feed-in tariffs and expansion of the state’s net metering 

rule (SUFG 2017a). However, there are other policy incentives that could also contribute 

to the expansion of solar in the state. For example, the Solar Energy Industries Association 

(SEIA, 2017) has identified the following policy priorities that would benefit the solar 

industry in Indiana: promote distributed generation policies; ensure future access to net 

metering for solar customers; and work with stakeholders to ensure reasonable and 

equitable property taxes for PV solar systems. 

Proponents of solar PV power argue that standard analyses fail to capture all the intrinsic 

value of PV power resulting from its temporal (high PV solar generation usually during 

peak system demand hours) and locational (potential cost savings in transmission and 

distribution infrastructure for on-site generation) characteristics. Despite these intrinsic 

advantages, the cost of solar PV power remains many times higher than the market 

valuation of the power it produces when compared with fossil fuel generation and other 

renewable technologies (Borenstein, 2008).  That comparison, nevertheless, ignores the 

reduction of the environmental impacts due to the use of this zero emissions technology as 

an alternative energy source relative to fossil fuel energy plants.  

2.2 Integration of Utility-Scale PV Solar Generation on a Power System 

This section presents a literature review to support the objective of assessing the impact of 

adding PV solar capacity on the use of other non-solar generating capacity (i.e. baseload 

and peaking generation resources) in Indiana’s power system. It also includes an overview 

of existing analyses regarding the operational challenges due to intermittency, non-

dispatchability and temporal generation fluctuations of renewable resources. Additionally, 

it offers a review of previous research about the optimal configurations (e.g. orientation 

and tilt angle) of PV solar arrays and estimation of the value of solar capacity.  
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2.2.1 PV Solar Power System Optimal Operational Designs  

Solar energy is a free resource that can be utilized in any part of the world by using a 

photovoltaic (PV) cell. However, the level of solar radiation captured by a solar module 

depends on the orientation and tilt of the panel. The azimuth refers to the angle of rotation 

of the solar panel around an axis that is perpendicular to the surface of the earth, where 

North is designated to be 0˚ and South is 180˚. The tilt refers to the angle relative to the 

axis that is perpendicular to the earth where an angle of zero is parallel to a tangent to the 

earth’s surface, and 90˚ is perpendicular to the earth’s surface. The appropriate choice of 

these angles is a critical feature that determines the solar panel’s efficiency. It has been 

traditionally accepted that the optimal azimuth angle of solar modules in the northern 

hemisphere is directly south (180˚ azimuth) with tilt angle equal to the latitude. This takes 

the perspective that the goal of orienting the panel is to maximize electricity output. 

However, these parameters may change depending on the relative position of the Earth and 

the Sun, climate conditions, utilization period of time (seasons of the year) and other factors 

(Chang, 2009a; Chang, 2009b; Li et al., 2011; Hummon et al., 2013). On the other hand, if 

the goal is to maximize the economic value of the electricity generated, taking into account 

the significant variations in the market price of electricity over time, the optimal angles 

may be different from those that maximize PV solar generation (Haysom et al., 2015; 

Rowlands et al., 2011; Hummon et al., 2013). 

Along those lines, Blumsack et al. (2010) affirms that traditional design criteria orients PV 

rooftop panels to have a maximum southern exposure with the objective of maximizing 

peak power production from the installation over a 24-hour period. However, the time of 

peak electricity generation from PV arrays with southern azimuth does not coincide with 

peak electricity demand and the peak value of the electricity.  

Thus, the optimal values for the azimuth and tilt angles for the design of PV solar 

generation systems may differ when an economic objective is selected rather than a power 

output objective. Potential PV solar generation mostly occurs during the midday hours 

when the demand and wholesale electric prices are not at their peak level. Furthermore, in 

the summer, average PV solar generation of west-facing plants can be more closely 
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coincident with system demand and electricity prices than south-facing installations 

(Borestein, 2008). Therefore, due to changes in wholesale prices of electricity that occur at 

5-minute intervals throughout the day, it may be better from an economic value perspective 

that the solar panels are more oriented towards the west to generate electricity during the 

mid- to late-afternoon when wholesale prices tend to peak during the summer time. 

The conventional practice of estimating the optimal orientation and tilt angle has ignored 

market demand and price considerations. Only a few analyses have optimized azimuth and 

tilt angles of solar panels with an objective of economic benefit rather than total annual 

energy yield. Rowlands et al. (2011) determined these optimal angles for a PV panel in two 

different locations in Canada maximizing revenue using four different pricing regimes (flat 

rate, time-of-use, spot market and nodal) from 2003 to 2008. For that analysis’ purpose, 

the flat rate regime used fixed electricity rates that are re-adjusted every six months for the 

summertime and wintertime. Time-of-use refers to an electricity rate that is set for three 

different periods (on-peak, mid-peak, and off-peak) reflecting historical patterns of demand 

in the province and two separate seasons. Spot market is the Hourly Ontario Energy Price 

(HOEP) that has been established by the Independent Electricity System Operator (IESO) 

in the province price and is paid by wholesale customers. Finally, the nodal price or 

locational marginal price (LMP) was estimated using the ‘shadow price’ for the nodes 

(individual generators) that are tracked by the system operator and were located close to 

the sites of interest in the province. These pricing regimes have particular temporal and 

locational characteristics that were later found to increase the value of solar electricity. In 

that study, the term value refers to the benefit of combining solar electricity information 

with market data (e.g. solar-PV system owners maximize revenue given the presence of 

market conditions as reflected by different pricing regimes).  

For that analysis, hourly solar generation for 465 different tilt-azimuth combinations were 

simulated for a single panel and then used to calculate the annual average revenue for each 

combination, pricing regime and location. The results showed that the desired tilt angle for 

Ottawa (45˚N latitude) was between 36˚ and 38˚, and for Toronto (44˚N latitude) was 

between 32˚ and 35˚ depending upon the particular pricing regime. The desired azimuth 

was found to be close to due south, between 4˚ west of due south and 6˚ east to due south 
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for Ottawa and between 1˚ west of due south and 2˚ east of due south for Toronto depending 

upon the type of pricing regime. The results also indicate that solar-PV generates more 

value in pricing regimes that reward time- and location-differentiated electricity generation. 

That is, some regimes reward not only electricity generated during high demand periods, 

but also electricity generated in areas with higher congestion on incoming lines. 

Hummon et al. (2013) affirmed that developers are unlikely to orient the solar array 

towards the west because of lost energy production and the potential increased economic 

benefit has not been sufficiently quantified in previous studies. In that study, they explored 

the relationship between the patterns of market prices and historical solar irradiance to 

quantify the benefits of using a variety of orientations for fixed-tilt PV and one-axis 

tracking arrays on the annual system economic value as opposed to energy production. The 

System Advisor Model (SAM) was used to simulate the PV solar generation of installations 

at several locations within various states (e.g. Florida, Texas, California, New York, etc.) 

in the USA and wholesale price data from different system operators and service territories 

(e.g. CAISO, NYISO, PJM, etc.) to represent the time-varying cost of electricity. Overall, 

the results showed that the increase in annual economic value is relatively small when the 

PV arrays are re-oriented. For example, if PV systems located within the PJM 

Interconnection service territory were optimally oriented to maximize annual economic 

solar value (azimuth=189˚± 4˚, tilt=latitude), it would increase the average economic value 

by only 0.25% (±0.17) compared to the value assessed by a “typical” installation (azimuth 

=180˚, tilt=latitude). The results show that the azimuth estimated to maximize annual 

economic value is always oriented more west than the azimuth that maximizes annual 

generation (e.g. for PJM locations the maximum generation azimuth = 182˚± 3˚ while the 

maximum economic azimuth = 189˚± 4˚). Finally, the range of the optimal azimuths was 

from 178˚ to 223˚, but these results are very dependent on the location of the system and 

market characteristics. Although no specific location in Indiana was considered in that 

study, part of the state is within the PJM market area. Since the price data for PJM is 

expected to be roughly representative of the wholesale electricity prices encountered in 

other parts of Indiana (i.e. within the PJM Regional Transmission Organization footprint), 

the resulting optimal design obtained in Humon’s study may allow for a meaningful 

comparison with the results from this study. 



11 

 

An analysis conducted by Rhodes et al. (2014) determined the optimal placement (azimuth 

and tilt) of fixed solar systems that maximize the production (kWh/m2/year) of AC 

electricity (after panel, inverter, and other derate losses) and the economic value of 

electricity generated ($/m2/year). That study used available solar insolation data to 

calculate solar radiation on a given plane, and then along with weather data, a residential 

system-based solar PV production model was built to estimate the total energy and 

economic impacts of system placement for Austin, TX. After construction of the models, 

these impacts were extended to 1,020 locations across the US, among which 11 were in 

Indiana. The value of solar energy produced was determined using Electric Reliability 

Council of Texas (ERCOT) wholesale electricity market, or local utility time-of-use rates 

as a proxy for average local grid conditions. Their work found that the optimal azimuth 

angle for 10 locations across Indiana fall within the south facing band, with orientations 

ranging from 170˚ to 190˚ for the maximum energy value, and to slightly west-facing band 

with azimuth angles between 190˚ and 200˚ for the  maximum economic value analysis. 

Although the rule of thumb is to decide the tilt angle based on the local latitude, the results 

showed that for most of the locations in the state, the optimal energy tilt is on average about 

-6˚ to -10˚ lower than Indiana’s latitude, which has an average of 39˚. Meanwhile, the 

average optimal economic value tilt is about -4˚ to -8˚ lower than the state’s latitude.  

Blumsack et al. (2010) determined the optimal orientation of residential fixed rooftop PV 

array that maximizes customer revenues from a net-metering perspective, using hourly 

wholesale electric prices (LMPs) from the PJM Interconnection and power output 

simulated for different system configurations. This was conducted under the assumption 

that the system was completely grid-tied, with no storage and the electric energy balance 

at any given hour determined if the customer-generator sells excess power or must pay for 

power consumed. The concluding remarks showed that overall East-West panel arrays 

configuration (array with half of the panels oriented due east and half oriented due west) 

increases power gains and thus revenues during morning hours relative to a southern 

orientation (Azimuth = 0° and tilt = 25°). However, in some cases, revenues declined 

during the afternoon peak. Therefore, considering orienting the panels based on wholesale 

electric prices may not perfectly correlate with local customer demands on an hour-to-hour 

basis. 
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2.2.2 PV Solar Generation and Power Generation System Characteristics  

Traditionally, electric power generation has been controlled to balance the time-varying 

electricity load (Madsen, 2015). That is, generation must match load at each moment in 

time. In order to meet the demand at any given time, it was common to use primarily 

traditional non-renewable energy generation resources (e.g. coal-fired plants, natural gas-

fired combined cycle plants, etc.) which are characterized as dispatchable. However, 

renewable energy technologies have different economic and technical characteristics 

relative to conventional generators.  

Halamay et al. (2011), identifies three major technical characteristics that describe most 

intermittent renewable generating resources (e.g. wind, solar and wave generation): 

variability, nondispatchability and energy source. These resources are considered variable 

because the power generation of large-scale solar plants changes over time and may go 

from low power output to full production or vice versa over relatively short periods of time. 

The term nondispatchable refers to the limited control that system operators have over the 

output of large-scale renewable resources. System operators must deal with whatever the 

output generated from renewable resources is in the same way as dealing with the load. 

The lack of certainty about the ability to generate from the renewable sources at any given 

time results in a low “capacity credit”. However, one unit of energy converted by renewable 

energy sources is equivalent to one unit of energy saved for “traditional” generation. 

Therefore, these energy sources can make a significant impact on energy requirements of 

the grid despite their limited contribution towards the power requirements of the grid for 

planning purposes.  

From an economic perspective, Baker et al. (2013) highlights three important features that 

differentiate solar PV from conventional generators. First, the main and obvious feature is 

that fuel (sunlight) is free, which consequently makes PV solar’s variable cost close to zero. 

Second, the increasing solar capacity penetration into the electricity supply system 

typically displaces fossil fuel generation that reduces operating costs and GHG emissions. 

Thus, the marginal economic benefit associated with additional solar capacity depends on 

the operating characteristics of the units displaced in terms of its effect upon operations 
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(operating margin) or capacity additions (build margin). Third, the nondispatchability of 

solar electricity generation engenders two issues. The time pattern of PV solar power can 

be advantageous as solar resources are most productive during high-demand hours when 

the value of energy is greatest. However, the intermittency of this resource can increase 

system costs due to the additional reserves and backup generation that may be required to 

maintain system reliability.  

The intrinsic characteristics of solar power pose critical challenges for incorporating large-

scale PV generation into the electric power system and ultimately may limit its potential 

contribution to the electricity sector. Since solar cannot be dispatched both up and down as 

is possible with non-renewable generators it is convenient to net solar generation from load. 

Then, dispatchable generators can be used to service the load net of solar. While this 

combines load and renewable output, it treats uncontrolled components of the system 

together, using the controlled components to follow the uncontrolled net load.  The addition 

of this renewable resource presents the challenge of changing the net of solar load pattern 

and tends to increase system variation, which is incorporated due to the daily and seasonal 

fluctuations of solar generation. That is, the additions of solar power to the system may 

reduce the net demand (normal load minus solar contributions) of electricity during the 

middle part of the day and move the need for electricity generation coming from other 

sources to the evening (NREL, 2013). Furthermore, Denholm et al. (2007), affirms that PV 

solar at low penetration levels is expected to reduce demand during peak periods and to fit 

well into the demand patterns of summertime because highest demand periods should be 

correlated with highest PV solar output. However, PV output may be less coincident with 

demand during other times of the year. 

For illustration purposes, Figure 2-1 shows the Indiana seasonal 2015 average hourly load, 

load net of solar, and a simulated solar output for a hypothetical 5,000 MWac nameplate 

solar project. The figure exhibits the seasonal variation of solar generation and shows the 

presence of a strong positive correlation between solar output and Indiana statewide load 

during the summer (69%) and a weak positive correlation during the winter (30%). As can 

be seen in Figure 2-1, during the summer season, solar output reduces average hourly peak 

load and shifts the time of the peak load hour from 4 PM to 8 PM (time equivalent to the 
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peak of the average hourly net of solar load curve). Since Indiana has its annual peak 

demand during the summer season, the integration of high levels of solar capacity into the 

system is expected to modify the amount and type of generation resources needed to meet 

the annual peak load. In winter, spring, and fall, solar generation could have a pronounce 

dip in the net of solar load because during mid-day hours, between early morning and late 

evening, load tends to have low levels and solar generation is at its highest. That is, at high 

PV solar penetration levels, there is the potential to have two peaks in the daily load curves 

for any of these seasons. According to CAISO (2013), this “duck curve” shape of the net 

load curve, demonstrates how electric systems are likely to evolve as more renewable 

power is added to the grid.  

According to Vithayasrichareon and MacGill (2015), the energy and capacity value of PV 

solar can be quite significant when compared to other variable generating technologies 

because its generation can be reasonably well correlated with daytime peak electricity 

demand. However, solar generation does not perfectly match the daily variability in the 

demand profile because of the temporal fluctuations of solar output. In other words, the 

increase of the system variability due to solar output daily and seasonal swings might result 

in the need for more flexible generators, in order to satisfy peak load and to meet ramping 

requirements associated with following the load net of solar generation. In that sense, 

peaking capacity has more operational flexibility than baseload generation to take care for 

this increased system variability. This unpredictability of renewable resources (especially 

wind and solar) means that electric utilities may not be able to properly control and plan 

for variable electricity demand (Obi and Bass, 2016). Thus, increasing the fraction of 

intermittent resources within the generation portfolio is one of the challenges that system 

planners need to address in order to make appropriate decisions regarding the quantity and 

type of new resource additions. 
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Figure 2-1 Indiana Seasonal 2015 Average Hourly Load, Net Load, and Solar Output 

(5,000 MWac) Patterns (MW). Source: SUFG and SAM simulated data. 

In order to ensure the reliability and efficiency of the system, system planners have been 

assigned the role of forecasting the demand into the future and planning capacity additions 

to meet the variable load at a reasonable cost. They also need to provide a level of reliability 

in case some of the generators are out of commission due to forced or unforced outages 

(Boroujeni et al. 2012). However, according to Huber et al. (2014), even under perfect 

forecast circumstances this variability of wind and solar imposes stress in the system 

operation in two ways: it can cause balancing resources to be cycled more frequently and 

may create ramp events of extreme duration and steepness.  

The level of flexibility to follow load of the power generating system depends largely on 

the mix of generation technologies. A system dominated by coal or nuclear generators will 

likely have a lower level of flexibility than a system dominated by gas or hydro units 

(Denholm et al., 2007). According to Ela et al. (2011), in order to understand the need for 

flexibility in the generation resources, it is useful to examine the different grid operating 

timeframes, which are categorized into three different classes: regulation, load following 

and unit commitment. Regulation typically covers the variability that occurs between 
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subsequent economic dispatches and ranges from several seconds to 5 minutes. Load 

following typically ranges from 5-15 minutes to a few hours and covers the service 

provided by generating units that have been previously committed, or can be started 

quickly, subject to the generator’s operating constraints. Unit commitment typically ranges 

from several hours to several days and involves the starting and synchronizing of thermal 

power generation needed to meet projected electricity demand. These characteristics are 

the operational challenges that grid operators need to account for to maintain reliability of 

the electricity system. Because generation ramping events (both up and down) of solar and 

wind units can occur rapidly (i.e. over several seconds to minutes), it is considered 

appropriate to focus the analysis on the regulation and load following services timeframes. 

In this study, 5-minute load and solar and wind generation data are considered appropriate 

to use for modeling the economic dispatch of the generation fleet and capture the short-

term fluctuations in the load net of solar and wind. Furthermore, this type of data enables 

evaluation of the magnitude and ramp duration (5-minute periods) of load net of solar and 

wind generation.  

2.2.3 Impacts of PV Solar Integration on a Power System  

A number of papers have evaluated the impacts of accommodating PV solar or wind 

generation in a power system considering the technical and economic limitations using 

different approaches. For example, Denholm et al. (2007) examined the limitations of a 

large-scale deployment of PV in a conventional electric power system and its interaction 

with utility systems considering the flexibility of existing traditional electric generators 

using hourly data. In that study the authors used a Load Direct Control (LDC) for an electric 

system in Texas and for planning purposes defined three regions on this curve: base load, 

intermediate load and peaking. The authors found that due to the mismatch of supply and 

demand, there is an absolute limit to the economic integration of renewable energy sources. 

The increase of PV solar generation is limited by the flexibility of conventional power 

systems, because their lack of ability to reduce output of “must-run” baseload plants. That 

approach provides some insight into the overall flexibility of systems. However, that study 

only considers minimum loading constraints, but does not consider ramping rates of the 
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plants or directly address the potential of adding capacity to cover additional ramping 

requirements.  

According to Vithayasrichareon and MacGill (2015), the important role that PV solar might 

play in the future generation portfolios represents a key policy question in addressing 

various economic, energy security and environmental challenges. In their study, a Monte 

Carlo based decision support tool was used to analyze future generation portfolios that 

include different penetration levels (10-30% of the generation portfolio on an installed 

generation capacity basis) of large-scale solar PV under uncertainty of future fossil-fuel 

prices, carbon pricing policy, level of electricity demand and different generation 

technology capital costs. That study considered an hourly net load duration curve (LDC) 

after accounting for simulated hourly solar generation in the context of the Australian 

National Electricity Market (NEM). Their modeling does not consider operating constrains 

such as ramp rates and minimum operating levels of generating units because it focuses on 

long-term generation planning and investment. Five generation options were considered in 

the case study: brown coal (lignite, lower heating value) plant, black coal (Bituminous, 

higher heating value) plant, combined cycle gas turbine (CCGT), open cycle gas turbine 

(OCGT) and PV. The System Advisor Model (SAM) was used to simulate hourly solar 

output in 2010 for 1-MW fixed solar PV plants for specific locations. The results showed, 

that at moderate carbon prices ($20/tCO2), generation portfolio expected costs increase 

rapidly for portfolios with a majority of coal technologies (>60% of total share) as PV 

penetration increases. This is because the high proportion of coal technology fixed costs 

compared with their low variable costs is similar to what PV contributes to the portfolio. 

Thus, PV is less valuable in that type of portfolio because it offsets a technology with 

similar low operating and fixed cost generation. In that case, PV solar does not complement 

coal technologies as well as CCGT and OCGT plants do. While this is the opposite for 

portfolios with a majority of CCGT and OCGT technologies, where the expected costs 

decrease or increase very slightly. Therefore, the rate of cost increase depends on the 

technology mix in the portfolio and highlights the potential of gas-fired and PV generation 

in complementing each other. 
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In another study, Huber et al. (2014), focuses on the magnitude and frequency of net load 

ramps to quantify the future flexibility requirements of a system due to large-scale 

penetration of both onshore wind and PV solar. That study used a 2011 hourly load profile, 

and wind and solar output data for each of 27 European countries. Net load ramps were 

chosen as a measure of the flexibility requirement of power systems since they have to be 

balanced by flexible resources such as dispatchable power plants. However, according to 

the authors, many of the conventional power plants considered in the commitment and 

dispatch process have flexibilities that require a planning period of up to 24 hours. 

Therefore, it is crucial to plan for ramping capabilities of the power plant fleet in a system 

over multiple hours when integrating renewable resources into the system. This is because 

net load ramp requirements over different periods determine the optimal portfolio of 

conventional power plants. This study does not provide specific estimation of the capacity 

levels needed to meet future ramping requirements but presents the 1-hour net load ramp 

rates magnitudes in terms of share of peak load. For example, the results presented for 

Germany and Ireland for energy penetration of wind and PV represent up to 30% of annual 

electricity demand (with solar PV accounting for less than 30% of that share) show that 

conventional plants have to ramp up to less than 25% of peak load in an hour. However, 

well-interconnected power systems can reduce ramping requirements substantially. The 

authors concluded that the future flexibility requirements in power systems in Europe 

depend on the share of variable renewables, their mix and the size of the power system.  

The integration of renewable resources can also be analyzed from a commitment and 

dispatch model perspective. Hetzer et al. (2008) incorporated both wind-powered and 

conventional generators in an economic dispatch problem. According to the authors, the 

economic dispatch (ED) problem seeks to find the optimal allocation of electrical power 

output from different available generators with given constraints. Due to the uncertainty of 

wind energy available at any time, a random variable with a probability distribution 

function is incorporated in their model. Furthermore, two penalty terms are included in the 

cost function to account for the underestimation and overestimation of the availability wind 

power. The other term in the function accounts for the sum of the costs of conventional 

generators. The model considered only two conventional generators with a minimum 

power output of 20% and two wind-powered generators to investigate how variations in 
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the wind power profiles and variations in different cost coefficients will affect the optimum 

solution of the optimization problem. The results vary depending on the assumed reserve 

cost coefficient for overestimating the wind energy and the penalty cost coefficient for 

underestimating it. 

Davis et al. (2013) developed a novel optimization methodology for determining the impact 

of increasing the level of wind capacity in Indiana’s generation system. That study used a 

capacity planning approach and an economic dispatch approach to estimate the impact of 

wind generation on the needs for other generation resources and total system costs using a 

load net of wind curve. In the study, 10-minute load and wind output data were used in the 

capacity planning model for determining the impacts on capacity using capital and variable 

costs for various generation technology types, but ignoring the potential additional capacity 

needed to meet ramping events resulting from wind output variability. Conversely, the 

economic dispatch approach used to estimate the system’s energy impacts considered the 

ramping limits for each type of generation resource as a constraint within the model. The 

authors showed that increasing wind capacity resulted in a decrease in the total resource 

needs from non-wind resources. However, the composition of the resource requirements’ 

mix shifted with an increasing need for peaking capacity and decreasing need for baseload 

and cycling capacity. For this study, an adjusted version of the approach of Davis et al. and 

several other characteristics of the above-mentioned methods are used as a basis for 

developing an approach to model the cost of integration of solar generation capacity.  

2.2.4 Background: PV Solar Capacity Value Calculation  

This section provides definitions of technical terms and explanations of the methodologies 

used to estimate the capacity contribution to reliability of conventional thermal power 

generators and renewable resources. The term “contribution to reliability” represents the 

estimation of the capacity value, which refers to the contribution of a generator or a power 

plant to reliably meeting the demand. The review of the following research studies helps 

to lay the foundation for achieving the objective of valuing PV solar capacity and 

estimating its equivalent value in terms of capacity of baseload and peaking resources 

within Indiana.  
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The North American Electric Corporation (NERC) traditional definition of reliability 

consists of two concepts: adequacy and operating reliability.1  Adequacy is defined as the  

ability of the electrical supply system to satisfy the aggregate electric power and energy 

requirements of the electricity consumers at all times, taking into account planned and 

reasonably expected unplanned outages of system components. Meanwhile, operating 

reliability is the ability of the power system to resist sudden faults or disturbances (e.g. 

electric short circuits or unanticipated loss of system components) (NERC, 2008). 

According to NERC (2011), variable generation, like wind and solar, contribute towards 

capacity and energy adequacy. Because most regions are capacity-constrained, that study, 

similar to this analysis, focuses the discussion on the contributions of the variable 

generation to capacity adequacy.  

Traditionally, system planning considers generation planning and transmission planning. 

The goal of system planning is to ensure that there are sufficient energy resources and 

delivery capacity to meet demand requirements in a reliable and economic matter. However, 

because the transmission system increases the availability of remote generation and 

changes the diversity of loads that affects the character of the resource mix, transmission 

ties are disabled in some studies (NERC, 2011). This case study characterizes the Indiana’s 

generation system as if it is an island because the transmission system and imports/exports 

of electricity are not considered. Furthermore, it is assumed that storage and demand-side 

resources are unavailable.  

In the generation system, the occurrence of generator outages due to mechanical failures, 

planned maintenance or intermittency of generating resources (such as wind and solar), 

may leave insufficient capacity to meet the load of a power system. Therefore, estimating 

the capacity value of a generation facility is crucial for accurate reliability and planning of 

the system (Madaeni et al., 2012). The capacity value of an electric generation facility is 

usually assessed with respect to the static conditions of the system (system adequacy) rather 

than to the ability of the system to react to sudden perturbations (operating reliability) 

                                                 
1 NERC used the term “security” until September 2001 but it was replaced with the term operating 

reliability to avoid confusion with homeland protection and critical infrastructure protection.  
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(Boroujeni et al., 2012; Duignan et al., 2012). The increasing penetration of solar and wind 

capacity in Indiana is expected to affect the generation system requirements and the reserve 

margins used for future resource planning. Planning reserve margin2 is a deterministic 

measure of the amount of energy generation capacity available to meet expected future 

peak demand.  

There are several methods to calculate capacity value of conventional generators within an 

electrical supply system, which can be easily adjusted for a renewable resource case. The 

Effective Load Carrying Capability (ELCC) is one of the most commonly used methods to 

assess capacity value from a system adequacy point of view (Duigman et al., 2012). The 

ELCC of a generator is defined as the additional demand which the system may support 

(when the generator is added to the system) while maintaining the same target reliability 

level (Duignan, 2012; Madaeni et al., 2012). Loss of load probability (LOLP) and loss of 

load expectation (LOLE) are evaluation techniques used by the ELCC method to measure 

system reliability.  

Other reliability-based methods used are the Equivalent Conventional Power (ECP) and 

Equivalent Firm Power (EFP) of a generator. These methods determine the equivalent 

capacity of a different generating technology that can replace the new generator while 

keeping the same system reliability level. However, the EFP methodology computes the 

capacity value using a benchmark plant assumed to be perfectly reliable (e.g. unit has 0% 

Forced Outage Rate). These methods are attractive in the context of a renewable generator 

because they allow measuring its capacity value in terms of a conventional generator 

(Madaeni et al., 2012).  

Previous studies have used the ELLC and ECP methods to estimate the capacity value of 

PV solar power resource. Using a case study of the western U.S., Madaeni et al. (2013) 

estimated that this resource, on average, has a wide range of capacity values of between 

52% and 75% of its AC rated capacity. These estimations vary depending on the 

                                                 
2 Reserve margins are meant to ensure that there is sufficient supply available in the system to address 

reliability challenges such as generation outages or sudden increases in energy demand (Pfeifenberger and 

Carden, 2013).  Reserve Margin =
Capacity−Peak Demand

Peak Demand
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technology (single- and double-axis sun-tracking systems), location (resource availability) 

and estimation method used (56% to 75% for the ECP method and 52% to 70% for the 

ELCC method). In this study, load patterns were fixed at 14 different locations to ascertain 

the effect of differences in solar availability patterns on the capacity value of PV. 

Furthermore, the capacity value estimates considered only small plants of 100 MW at each 

location, thus these estimates do not account for diminishing marginal capacity values due 

to higher penetrations of PV solar capacity. Additionally, these estimates were computed 

in isolation and therefore do not account for spatial correlation of solar availability between 

sites.  

In another study conducted by GE Energy (2010) and prepared for the NREL, the capacity 

values of PV solar and wind generation were calculated using the EFP reliability 

methodology. The reliability methods historically focus on the peak hour because if a 

shortage could occur, it would happen at the daily peak load time. However, in their study, 

in order to capture the potential of having capacity shortages at times other than the peak 

hour, the proposed model was adjusted to look at all 24 hours in the day. According to the 

authors, a lower capacity value of intermittent resources compared to traditional thermal 

units is explained because PV and wind generation tend to occur more during off-peak 

periods. Some of the results of that study were based on the 2006 load shape for the power 

system operated by a group of Utilities in Arizona, Colorado, Nevada, New Mexico and 

Wyoming. For that year and for a 10% wind and 1% solar power levels of penetration from 

the total of annual electricity sales, the capacity values for wind and PV solar were 12.1% 

and 33.2%, respectively. For 30% wind and 5% solar penetrations levels, the capacity 

values were 10.8% and 29.3% for wind and PV solar respectively. It is noteworthy that 

switching from the EFP method to the ECP or ELCC increases the values by 5% to 10%.  

Although, the reliability-based methods are widely accepted and used due to their 

robustness, their use implies a high level of computational burden and data requirements 

(i.e. extensive time series data for many years of load and conventional and renewable 

generation) (Sigrin et al., 2014; Madaeni et al., 2012). In contrast to those methods, there 

are alternative methodologies and approximation techniques that have been used to 

specifically quantify the capacity values of solar generation (Perez et al., 2006; Duigman 
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et al., 2012; Madaeni et al., 2013) and some require more modest amounts of system data 

(Sigrin et al., 2014).  

Sigrin et al. (2014) used the Regional Energy Deployment System (ReEDS), which is a 

generation and transmission capacity-expansion model of the U.S. electricity system, to 

find the capacity value estimates of solar PV. The ReEDS model employs a measure of a 

solar generator’s ELCC to estimate its contributions to planning reserves in each of 17 

periods of a year. That measure is the Z-method, which approximates LOLPs through the 

distribution of the surplus capacity of the system and supplemented with additional 

methods that weigh the relative risk of loss of load. That proposed methodology produced 

capacity values at a fraction of the computational and data requirements of a full reliability-

based method because there is no need to conduct an hourly time series analysis. In that 

study, it is assumed that LOLP is well-correlated with the net system load. That is, the 

capacity value is well-estimated by a few highest net load hours (reliability-critical hours 

of the year) due to strong correlation between load and generation. The national solar 

resource for that study is a representation of 134 areas that allow the model to account for 

geospatial differences in resource quality and statistical availability during reliability-

critical periods. Furthermore, the estimation of solar PV capacity value is also known to be 

highly sensitive to increasing levels of PV solar capacity because the timing of the 

reliability-critical hours may shift to later in the day, when solar irradiance is lower, 

therefore decreasing PV’s capacity value. The authors conclude that the capacity values 

obtained with the ReEDS model compare favorably with the outcomes of a handful of 

analyses using hourly resolution ELCC-based methods for a range of levels of solar energy 

penetration.  

According to Davis et al. (2013), valuing wind capacity has focused on reliability for 

serving peak load, but this dimension of the problem does not directly address the impact 

of investments in wind capacity on system costs. In their study, a capacity expansion model 

was used to estimate the changes on the total capital costs of Indiana’s power system as 

three different generation resource types were added at various wind capacity penetration 

levels. However, that methodology also has the potential of being used as an approximation 

technique to estimate the capacity value of wind in terms of capacity of conventional 
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generation resources while meeting the same peak load level of the system. From their 

results, it can be inferred that adding 1,000 MW of wind capacity within Indiana’s power 

system is equivalent to displace from the system about 0 MW of a pulverized coal base 

load capacity and about 380 MW of a natural gas fired combined cycle capacity. However, 

this wind addition needs to be complemented with the addition of about 100 MW of a 

natural gas combustion turbine peaking capacity in order to compensate for the variability 

of this renewable resource.  

For this study, the technique presented by Davis et al. (2013) is considered in order to 

assess the capacity value of PV solar and PV solar plus wind for the Indiana’s electricity 

power system. The advantage of that approximation technique is that it provides estimates 

of the capacity value for renewable resources in terms of specific generation technologies 

with low computational effort. 
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CHAPTER 3. METODOLOGY  

3.1 Data Collection, Analysis and Simulation  

This section provides a description of the data collection and analysis procedures used in 

this study. It presents an explanation of the sources used to gather Indiana’s generation 

assets, solar generation, wind generation, load and wholesale electricity prices data. 

Furthermore, this section elaborates on the processes performed to have the load and 

generation data sets in the same 5-minute time resolution.    

3.1.1 Indiana’s Conventional Generation Assets Data 

Existing generation resources and projected capacity requirements for the Indiana 

jurisdictional area (e.g. including units in Indiana and other states that generate electricity 

to meet Indiana’s demand only) are collected from the 2015 EIA-860 form, public news 

reports, independent projects developers and utilities. All the generators or plants dedicated 

to serve Indiana load are considered as installed generation capacity. The term installed 

generation capacity includes existing projects, projects under construction and/or already 

approved by the Indiana Utility Regulatory Commission (IURC). Table 3.6 presents the 

identified installed generation capacity by technology type. 

3.1.2 Simulated PV Solar Generation Data 

For this study, the data procedures include the following process steps: calibration of the 

System Advisor Model (SAM), collection of the locations and technical characteristics of 

Indiana’s solar projects, simulation of hourly solar generation data for those projects, and 

conversion from hourly to 5-minute solar generation data. 

First step is the calibration of the System Advisor Model (SAM), which is a computer tool 

developed at the National Renewable Energy Laboratory (NREL), Sandia National 

Laboratories, the University of Wisconsin, and other organizations to model renewable 
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energy projects by simulating power generation of a particular technology on a location 

specific basis.  

After the SAM model calibration process, the next stage is the simulation of hourly solar 

generation data for all the Indiana’s solar assets. In the final step, the hourly data is 

processed into a 5-minute solar output data. The following sections provide details about 

all the steps considered to obtain the final solar output data used in this analysis. 

3.1.2.1 Calibration of SAM Model 

SAM’s user program is free to download, and its interface allows one to specify or select 

default values for many input variables such as the project’s location, weather conditions, 

the type of technology and design of the solar installations, etc. The simulation analysis is 

based on the installation design parameters and all of the input data entered. Calculations 

can be made in hour-by-hour or sub-hourly time steps (intervals as short as one minute can 

be used given weather data with that time resolution), to obtain a chronological series of 

estimates of the power system generation over a single year using either historical or 

representative weather conditions.  

In order for SAM to simulate hourly generation data comparable to the potential generation 

of identified installed PV solar capacity generation serving Indiana’s ratepayers, the model 

is first calibrated using actual hourly solar output data provided under a confidentiality 

agreement by an electric utility (Indianapolis Power & Light (IPL)). The available data is 

used to calibrate the model and to determine the appropriate values for the input variables.  

IPL’s hourly generation net of losses data for 2015, and information about the system 

parameters (e.g. system nameplate capacity, DC to AC conversion ratio,3 module type such 

as crystalline silicon or thin film), orientation (e.g. array type, tilt and azimuth degrees), 

and location are received for different utility-scale PV solar farms or projects. Solar farms 

are grouped based on three different solar panels array types: horizontal single axis tracking, 

fixed ground mount, and fixed roof mount.  

                                                 
3 Represent the ratio at which the inverter convert a DC electrical current into an AC electrical current (type 

of current used by normal home appliances) 
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IPL also provides information regarding the ground coverage ratio (GCR). If the project 

has a one-axis tracking array, SAM allows you to enter a value for this parameter, which 

is equal to the length of the side of the PV panels in one row divided by the separation 

distance between rows. This represents the ratio of the area of the PV array to the total 

ground area, which is used by the model to estimate losses in sunlight capture due to self-

shading (Culligan and Botkin, 2007).  

The identified array types describe whether the array of the PV panels is fixed or follow 

the movement of the sun with one axis rotation. Figure 3-1 shows both types of arrays and 

illustrates the difference between the tilt (angle between the horizontal plane and the solar 

module) and azimuth (angle measured along the horizon that determines the array’s 

orientation, with zero degrees corresponding to North) angles. Tilt angles of 23 degrees for 

fixed ground mount arrays, 10 degrees for roof mount projects and 0 degrees (horizontal 

mount) for axis tracking units are found to be representative of IPL’s solar projects. Fixed 

ground and roof top mounted projects are oriented South and horizontal single axis tracking 

units have a North to South axis with tracking movement from East to West.     

 

Figure 3-1 Tilt and Azimuth Angles for Fixed and Single-axis Tracking PV Arrays. Source: 

SAM User’s Guide 

IPL provides actual hourly generation data for a total of sixteen solar projects located in 

Marion County. Among these projects, nine of the sites are fixed and ground mounted, two 

have horizontal single axis tracking arrays, and five are fixed mounted over commercial 

buildings’ roofs. In order to consistently calibrate the SAM model, the solar projects 

without hourly generation data for a complete year (some sites came on line in the middle 

of 2015) are removed from the calibration process final sites list. For the remaining projects, 
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days with missing or corrupted observations are also eliminated to obtain the final data set 

for this process. The data set includes nameplate capacities and DC to AC conversion ratio 

of the solar sites with complete data. Projects with the same array type are aggregated and 

averaged, respectively.  

For the module type variable, three technology options can be chosen in SAM: standard 

(glass crystalline silicon), premium (anti-reflective crystalline silicon) and glass thin film. 

However, all the data provided by IPL correspond to solar projects with only the standard 

technology. The aggregated and averaged numbers, module type and orientation 

information, and SAM’s weather data file for the specific location (the “USA IN 

Indianapolis” weather station is used due to its proximity to all IPL’s solar projects 

locations) are selected and entered as input values to later run the model simulations.  

After the inclusion of all these values in the model, various combinations of inverter 

efficiency and loss percentages are also tested as input parameters. Values for inverter 

efficiency and loss percentages are calibrated to closely match the capacity factor value 

resulting from the SAM runs and the average capacity factor calculated from the actual 

data for projects with the same array type (Table 3-1). Note that the loss percentages reflect 

several types of efficiency losses: soiling, shading, snow, mismatch (e.g. slight differences 

in performance of individual solar panels in the array), wiring, connections, light-induced 

degradation, nameplate capacity (accounting for accuracy of manufacturer’s nameplate 

rating), and age. In SAM, losses and inefficiency of the inverter are multiplicative factors, 

making the amount of these losses proportional to hourly generation. 

After obtaining the simulation results, correlations and graphical displays of the observed 

and modeled solar generation data sets are also created. These analyses provide insight 

regarding the most appropriate values to be used for the input variables. These analyses 

also help to identify that differences observed in the results are mainly due to the weather 

discrepancies affecting the actual observed data year and the representative modeled data. 

To simulate systems performance, SAM can use a typical year file representing the 

resource and weather conditions at a specific location. This file is obtained by choosing a 

data set of twelve months from a multi-year period that best represents average weather 
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conditions over a long time. Since modeled data is estimated using a typical year of climate 

conditions, these numbers do not reflect the reduction of solar generation that actual data 

show due to higher than normal rain fall during June and July in 2015. However, the use 

of typical year weather data is considered acceptable for the purpose of simulating power 

generation for the total PV solar capacity installed in Indiana. In addition to the numerical 

analysis, the calibration is considered appropriate because the simulation results tracked 

the IPL hourly data closely. 

The calibration process results in three different sets of parameters corresponding to each 

array type (ground one-axis tracking, ground fixed, and rooftop fixed). The PV solar 

installations of the final data set are aggregated by summing their nameplate capacity for 

each array type. This aggregated capacity and the identified parameters of each set are used 

to populate the SAM’s input parameters section to run the model using the Indianapolis 

weather station. Table 3-1 shows the three resulting sets of values for each of the array 

types that were used for obtaining solar generation estimates for this study.  

Table 3-1 Input Parameters by Array Type resulting from SAM model calibration* 

 Array Type 

Input Variables Single axis tracking Fixed ground mount Fixed roof mount 

Module type Standard Standard Standard 

DC to AC ratio 1.301 1.284 1.155 

Inverter efficiency 96 96 90 

Tilt* 0 degrees 23 degrees 10 degrees 

Azimuth 180 degrees (South) 180 degrees (South) 
180 degrees 

(South) 

Ground coverage 

ratio (GCR) 
0.4 N/A N/A 

Losses 11.22% 15.92% 21.80% 

Capacity Factor 

(SAM Generated = 

Observed) 

17.42% 14.98% 12.30% 

 *A tilt angle where zero degrees is a horizontal and 90 degrees is a vertical array 

3.1.2.2 Indiana’s PV Solar Generation Assets  

For this analysis, existing and approved utility-scale and medium-scale (>100kWac) PV 

solar projects dedicated to serve Indiana load are considered as installed solar generation 

capacity. Detailed information on the solar projects’ sizes (kWac), module types (e.g. 
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standard crystalline silicon and thin film), array type (e.g. single axis tracking, fixed ground, 

and fixed roof mount), and location (county and state) are gathered from the IURC, utilities 

and independent developers’ news releases and websites. Most of these solar projects are 

located within the state of Indiana, with only one project located in the state of Michigan.  

Table 3-2 Capacity and Number of Installed PV Generation Solar Projects in Indiana 

Counties with PV 

Solar Projects* 

Number of 

Projects (>100 

kWac) 

Total PV Solar Capacity 

by County (kWac) 

Share out of total 

capacity (%) 

Bartholomew 1 1,000 0.52 

Clark 1 1,000 0.52 

Clay 1 5,000 2.60 

Daviess 1 4,000 2.08 

Dubois 1 2,000 1.04 

Elkhart 2 1,002 0.52 

Grant 1 2,500 1.30 

Greene 1 1,000 0.52 

Harrison 1 1,000 0.52 

Henry 1 1,000 0.52 

Howard 1 7,000 3.63 

Jasper 1 1,000 0.52 

Johnson 1 1,000 0.52 

Lake 2 5,386 2.80 

Madison 4 16,200 8.41 

Marion 19 92,395 47.98 

Marshall 1 700 0.36 

Martin 1 17,000 8.83 

Miami 1 3,000 1.56 

Monroe 1 1,000 0.52 

Montgomery 2 3,250 1.69 

Newton 1 650 0.34 

Perry 1 1,000 0.52 

Putman 1 300 0.16 

Saint Joseph 2 7,600 3.95 

State of Michigan* 1 4,600 2.39 

Sullivan 1 5,000 2.60 

Vigo 1 5,000 2.60 

Wayne 1 1,000 0.52 

Total 54 192,583 100 
*One PV solar project owned by an Indiana utility is located in the state of Michigan. 

Table 3-2 presents the aggregated number and capacity size of PV solar projects organized 

by county. This table also includes the capacity share of each county out of the total Indiana 

installed capacity. A total of 54 PV solar projects that add up to about 192.6 MWac are 
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identified, and the majority of projects (48%) are located around the Indianapolis area in 

Marion County.  

Since weather conditions vary from one site to another, weather stations that have 

preloaded data in the SAM’s database are used as reference points to group the identified 

projects in the state. The projects are grouped into eight different zones based on their 

proximity to seven different weather stations across Indiana and one located in Illinois. 

This process is conducted in order to more accurately simulate hourly generation data by 

capturing the specific regional weather conditions affecting each project. Then, the total 

PV solar capacity levels (kWac) by county are aggregated for each zone. Table 3-3 presents 

the specific SAM weather stations, counties or state where projects are located and 

aggregated capacity generation by zone. Figure 3-2 shows the location of the PV solar 

projects and the SAM weather stations selected as appropriate for each zone. 

Table 3-3 Weather Stations, Counties and Projects Capacity by Zone 

Zone SAM Weather Stations Counties* 

Projects’ 

Combined 

Capacity 

(kWac) 

1 Chicago Midway Airport Lake Newton Jasper    7,036 

2 South Bend Saint Joseph Elkhart Marshall 
state of 

Michigan* 

 
13,902 

3 Grissom Air Reserve Base Miami Howard Grant    12,500 

4 
Lafayette Purdue University 

Airport 
Montgomery     

3,250 

5 
Delaware Co. Airport 

Johnson Field 
Madison Henry Wayne    

18,200 

6 Indianapolis Bartholomew Marion Johnson    94,395 

7 
Terre Haute Hulman Reg. 

Airport 
Putman Monroe  Sullivan Greene Vigo  Clay 17,300 

8 Huntingburg Dubois  Martin  Harrison Daviess Perry Clark 26,000 

 Total       192,583 

*The solar project in the state of Michigan is located nearby South Bend weather station  
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Figure 3-2 PV Solar Projects and SAM Weather Stations. Source: Map outline from 

www.worldatlas.com 

After being organized by zone, the projects are grouped again based on their module type 

and array type information where only three projects are identified as having a different 

module technology (thin film in Zone 2) than the other sites. Although, none of the projects 

used in the calibration process has a thin film module, SAM can reflect the impact of using 

this or other type of module technologies in the simulation results. Table 3-4 includes the 

total installed PV solar capacity organized by zone and type of array and module 

technology.  
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Table 3-4 Installed PV solar capacity (kWac) by zone, module type and array type  

Zone 

Single axis 

tracking 
 Fixed ground mount Fixed roof mount 

Project Total Capacity 

Standard  Standard Thin film Standard 

1 -  7,036 - - 7,036 

2 -  1,075 12,200 627 13,902 

3 -  12,500 - - 12,500 

4 -  3,250 - - 3,250 

5 10,200  8,000 - - 18,200 

6 12,000  64,580 - 17,815 94,395 

7 2,000  15,300 - - 17,300 

8 2,000  24,000 - - 26,000 

Total 26,200  135,741 12,200 18,442 192,583 

 

 

The fixed ground mount array with standard technology accounts for about 70% of the 

total installed solar capacity serving Indiana customers, and the fixed thin film technology 

is the least used array type, representing only 6% of the overall solar projects total capacity. 

Both single axis tracking (14 %) and fixed roof mount (10 %) account for about 24% of 

the total capacity of the projects.    

3.1.2.3 Simulation of PV Solar Hourly Generation Data 

A total of 15 combinations of zone, module type and arrays type are identified in Indiana. 

It is noteworthy that the total capacity of each group reported in kWac is converted to kWdc 

using the DC to AC conversion ratio obtained from the SAM calibration process. This is 

because the variable parameter interface in SAM only allows a user to enter the system 

nameplate size values in kWdc.  

Due to the removal of some observations with zero values to consistently match the hours 

of the actual and simulated output at the beginning of the calibration procedure, the 

estimated operating losses value does not capture the potential curtailment or availability 

(scheduled and/or unscheduled outages) losses of the PV systems. Therefore, a typical 

availability derate factor of 2% is added to the loss values estimated at the calibration stage 

(i.e. the 15.92% losses identified in the calibration process turn into 17.92% in the final run 

for fixed ground mount array type) (Marion, 2005). 
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The simulated annual PV solar outputs for each of the 15 combinations of solar projects 

located in specific zones with different types of technology or design are presented in Table 

3-5. The 303,457 MWh represents the simulated total annual energy that may be supplied 

by the total capacity of the projects (192.6 MWac).  

Table 3-5 Simulated Annual System Output (MWh)  

Zone 
Single axis tracking Fixed ground mount Fixed roof mount Total Energy 

 by Zone Standard Standard Thin film Standard 

1  10,847   10,847 

2  1,636 18,655 706 20,997 

3  18,596   18,596 

4  4,616   4,616 

5 17,307 11,576   28,883 

6 23,305 106,239  21,608 151,152 

7 3,296 21,297   24,593 

8 3,989 39,784   43,773 

Total 47,897 214,591 18,655 22,314 303,457 

 

3.1.2.4 Conversion to 5-minute PV Solar Generation Data 

For SAM to simulate solar generation output with a 5-minute time resolution, the input 

weather data files need to have the same time resolution. However, there is no public 

weather data available with a level of granularity lower than 30-minute time intervals. One 

of the alternatives is to purchase 1-minute typical meteorological years (TMY) weather 

data from Meteonorm, a commercial vendor, and then to process it into 5-minute weather 

data. However, the solar radiation values in this data set are estimated using the average 

hourly values of the majority of these weather variables and therefore do not accurately 

reflect the actual sub-hourly variation in solar radiation.  

Therefore, an alternative procedure to generate 5-minute PV solar power output is 

developed for the Indiana case. The procedure relies on the observed variability of an 

available 5-minute generation data set that is overlaid on the hourly solar output data 

simulated with SAM. Figure 3-3 presents the diagram of the steps taken to develop a 5-

minute simulated solar output data set for Indiana. The observed 5-minute data set is 

collected by using solar panels on the roof of the Knoy Building on Purdue University’s 

West Lafayette campus. This is referred to here as the Knoy data. The left-hand side of the 
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diagram explains the processes applied to the Knoy data. The right-hand side of the 

diagram shows how the hourly SAM data that is simulated and then processed to add in 

the 5-minute variability that is implied by the Knoy data. The end result is a state-level 

final 5-minute solar output data set.      

The first step of the procedure is to assemble the observed 5-minute generation data set. 

This data set covers the period from April 2015 through September 2016 and is collected 

from Knoy’s 3-kW PV rooftop solar project. In order to complete a workable data set for 

a whole year, data from September through December 2015 are combined with data from 

January through August 2016. 
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Figure 3-3 Step-by-step 5-minute Solar Data Process Diagram 
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In the second step of this procedure, the actual 5-minute generation values are averaged for 

each hour to obtain hourly solar data. This puts this data on the same time granularity as 

the Indiana-level SAM simulated hourly solar output. In step 3, a continuous, linear 

piecewise approximation is used to linearly interpolate between the hourly average points 

as a smoothed approximation to the actual 5-minute PV solar power output. According to 

Toriello and Vielma (2011), the problem of fitting a function of some prescribed form to a 

finite set of data points has been studied for hundreds of years, and has applications in 

various fields. Within the optimization field, fitting problems are modeled as convex norm 

minimization models. Chua et al. (1977) affirm that the main motivation for the use of a 

piecewise linear approximation is the possibility for taking advantage of linear techniques 

of analysis over a region with linear characteristics. Let z index the number of minutes, k 

index the number of 5-minute intervals and let j index hours. For formulation and 

calculation reasons z and k indices start from 0 instead of 1. Each hour contains twelve 5-

minute intervals, and the average output for the hour is known and equal to mj.  The 

objective of the piecewise linear function fitting problem used in this study is to minimize 

the sum over the year of the squares of the differences between the power output pairs of 

adjacent 5-minute interval points. This objective function is optimized subject to a set of 

constraints that require that the approximated average power output for each hour j is equal 

to the actual average power output (mj) for that hour. The objective and constraints are 

displayed below: 

                          min ∑(−𝑓𝑘−1 + 𝑓𝑘)2       

𝐾

𝑘

        ∀[𝑘 > 1]                      (1) 

𝑚𝑗 = (
𝑓𝑘−12 + 2𝑓𝑘−11 + ⋯ + 2𝑓𝑘−1 + 𝑓𝑘

24
)       ∀𝑗, [𝑘 = 𝑗 × 12]      (2) 

where 

k = Index for number of 5-minute intervals within a year starting from zero; 

K= Total number of 5-minute intervals within a year (105,120); 

fk = The power output at the beginning of each 5-minute interval; 

j = Index for hours in a year (8,760); and  
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𝑚𝑗 = Average power output in hour j. 

The average output over each 5-minute interval is then expressed as the average of the 

power output at the end points as shown below: The values of these parameters represent 

the constructed 5-minute solar output data set for the Knoy project (see Figure 3-2).  

𝑝𝑘 = (
𝑓𝑘−1 + 𝑓𝑘

2
)                   (3) 

where 

pk = Average power output approximation values at each 5-minute interval of the year. 

Finally, the equation (4) shows the piecewise linear approximation function (plin) indexed 

to each minute z of the year. This function is defined by the values of the parameters pk and 

is linear between the points of each of the 5-minute intervals.  

𝑝𝑙𝑖𝑛𝑧 = [
5 × (𝑘 + 1) − 𝑧

5
] × 𝑝𝑘 +   [

𝑧 − 5 × (𝑘)

5
] × 𝑝𝑘+1    ∀𝑘, [5(𝑘) ≤ 𝑧 < 5(𝑘 + 1)]     (4) 

where 

z = Index for number of minutes within a year [0, 525,600]; and 

plinz = Piecewise linear approximation value for each 1-minute interval of the year. 

Figure 3-4 illustrates the 5-minute actual Knoy solar power output data for three hours 

randomly selected in a year with the first hour showing the output values from the different 

pieces used to define the piecewise linear approximation function plinz. All the fk values 

obtained from the optimization process form a step function for the whole year. The total 

area below this function must equal the sum over the year of the areas under the hourly 

average ml output level. 
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Figure 3-4 5-minute Actual Data and Piecewise Linear Approximations for Three Random 

Hours  

The differences between the constructed 5-minute approximation and the 5-minute actual 

data represent the positive and negative deviations from the piecewise linear approximation 

for each of the 5-minute intervals. At this point, all the observations with zero values 

(collected between 11 PM and 6 AM) in the piecewise linear data series are temporarily 

removed from the data set before continuing with the rest of the simulation procedure. In 

the end, after a satisfactory 5-minute solar output simulated data set is obtained for the 

morning and afternoon hours, the observations with zero values are added back with zero 

values to get the complete final data set.  

The next steps provide details of a procedure to obtain simulated 5-minute data with 

statistical characteristics similar to the actual 5-minute solar data. The main idea of this 

procedure is to sample the distribution of random deviations by month of the Knoy 

observed data from the piecewise linear approximation to generate deviations from a 

piecewise linear approximation for Indiana to obtain a 5-minute simulated solar generation 

data set. The calculations for each month are scaled down to the level of the Knoy data by 

multiplying it by the ratio of the maximum solar output of the month of the Knoy project 
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divided by the maximum output value for the same month. Then, random deviations are 

sampled as is explained below, and added to the piecewise linear approximation. The data 

sets for all the months are sorted into chronological order to arrive at an annual data set for 

the state. This process is performed independently eight times for the eight Indiana solar 

zones. Each of the eight data sets are then scaled by the nameplate capacity identified in 

each zone and aggregated to the Indiana level to obtain a 5-minute simulated solar output 

pattern for the state. 

An important aspect of step 4 in Figure 3-3 is that the deviations of the observed Knoy 

power output data from the piecewise linear approximation are heteroscedastic. That is, the 

magnitudes of the deviations vary with the magnitudes of the power output. In order to 

capture this heteroscedasticity, the observed deviations are grouped in a couple of ways. 

First, the values are separated by month. Then, within each month, the paired observations 

of piecewise linear values and deviations are sorted into ascending order of the piecewise 

linear values. This sorted data set for each month is partitioned into consecutive bins of 40 

observations each, and then a series of deviation values are randomly drawn from each bin. 

Meanwhile, the solar hourly output simulated in SAM for the three array types (ground one 

axis tracking, ground fixed, and rooftop fixed) for each of the eight different locations 

across Indiana are aggregated to a statewide level as part of step 5 of this procedure. Then, 

in step 6, Indiana’s simulated hourly solar output data series is also approximated with a 

piecewise linear function, using procedures parallel to step 3 to construct a 5-minute data 

series. This constructed 5-minute solar output for the state is grouped by month, and then 

the values are also sorted into ascending order within each month. 

The next step (7) of this procedure scales down the state piecewise linear approximation of 

each month by a multiplicative factor, so that the maximum generation value of the 

piecewise linear data series is equal to the maximum value of the piecewise linear series 

for the Knoy installation. Then, the scaled constructed data set for the state is grouped into 

bins according to the lower and upper cutoff values of the 40 bins by month used to 

partition the piecewise linear data for Knoy.  
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In step 8, for each month, a random draw from the stratified distributions of deviations 

(obtained in step 4) from each of the original bins is added to the corresponding created 

bins (created in step 7) with the Indiana’s piecewise linear generation values. Then, as part 

of step 9, the data with the added deviations from all the 40 bins are merged together 

resulting in one data series for each month. This data series is resorted into chronological 

order, and using the same multiplicative factor determined in step 7, the chronological 

dataset is scaled back up to the original capacity levels for the state. For the last part of this 

process, the zero values temporarily removed before step 4 are added back. This process is 

repeated independently eight times for the eight different zones. Then, each of the eight 

state’s 5-minute solar output data sets is scaled by the nameplate capacity of each zone to 

obtain eight regional data sets. 

Despite the fact that this procedure is based on the distribution of the observed deviations, 

there are a few cases in the final data set with negative solar generation values. These 

negative values are replaced with zeros. Also, there are a few observations with values 

greater than the maximum possible generation that can be achieved with the capacity 

installed of each zone. In these cases, the observations’ values are clipped at the maximum 

output level that could be generated with the solar capacity of each zone. Finally, for the 

10th and last step of this procedure, the eight regional data sets are aggregated, in order to 

get a final 5-minute solar generation output data set for Indiana that is used in the capacity 

planning and cost measurements models.  

3.1.3 Indiana’s Wind Assets and Generation Data 

Annual simulated 5-minute wind turbine power data for the 2010-2012 period are collected 

using the Wind Integration National Dataset (WIND) Toolkit. This is an updated and 

expanded project of the Eastern and Western Wind Datasets, which was designed by NREL 

to provide estimated power production from hypothetical wind farms for 2004, 2005 and 

2006. The WIND Toolkit contains meteorological conditions and turbine power for more 

than 126,000 sites in the United States. In that project, the data set of the power produced 

at each of the turbine locations was created considering the wind resource data at 100-

meter hub height and site-appropriate turbine power curves. The WIND toolkit allows a 
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user to download the wind power data for a specific point using GPS coordinates or by 

selecting pre-identified wind farm sites. For this analysis, the specific points or wind farms 

are selected based on their close proximity to the sites of the 2017 wind power purchase 

agreements (PPA) contracted to Indiana utilities (SUFG, 2017a). Figure-3.5 shows the 

spatial distribution of the wind farms selling electricity to the state.  

 

  

Figure 3-5  Locations of Wind Farms with PPA contracted with Indiana Utilities.4 Source: 

Map outline by angga (www.selventhiran.com) 

The capacity of PPAs for various wind farms located in Indiana represents about 68% (866 

MW) of the total PPA capacity (1,282 MW). The capacity of the wind PPAs located in 

Minnesota is 201 MW, in Iowa is 146 MW, in South Dakota is 50 MW and in Illinois is 

18 MW, accounting for 32% (416 MW) of the total.  

The wind power data corresponding to the selected wind farms’ capacities are scaled using 

the PPAs’ capacities, totaling about 1,282 MW. Three scaled 5-minute wind power data 

sets are obtained - one for each year in the 2010-2012 period.   

                                                 
4 Note: The size of the hexagon is proportional to the PPA capacity contracted with wind farms of in every 

state. The capacity of wind PPAs are 866 MW in Indiana, 201 MW in Minnesota, 146 MW in Iowa, 50 MW 

in South Dakota, and 18 MW in Illinois. 
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3.1.4 Indiana’s Load Data 

In order to develop the case study for Indiana, the analysis is performed using actual hourly 

load data for 2010, 2011 and 2012, which are collected from the individual utilities and 

summed to obtain a state-wide load (SUFG, 2017b). Three distinct projected annual load 

profiles for 2035 are developed by scaling the load data for each of the three years (2010-

2012) to have the equivalent projected annual energy consumption (131,105 GWh) in 2035 

(SUFG, 2017b). Because 2012 was a leap year, data from that additional day is removed 

from the final data set.  

Each of the three hourly load profiles scaled to the equivalent load in 2035 are converted 

from hourly to 5-minute data using a piecewise linear approach identical to the one 

previously described in the solar simulation data section. This procedure is considered 

sufficient because aggregate load is expected to have relatively low variation within each 

hour due to its slow response to temperatures and weather changes. This is confirmed by 

calculating the coefficient of variation (CV) of the actual MISO 5-minute load data for 

several months. These CVs are roughly a factor of fifteen times lower than the CV 

calculated for the observed Knoy 5-minute solar generation data.  

3.1.5 Wholesale Electricity Price Data 

One of the goals of this study is to estimate the PV solar installation design that maximized 

the annual economic value of solar generation. This estimation uses the SAM simulated 

hourly PV solar output from various combinations of tilt and azimuth angles and the 

electricity prices from the wholesale electricity market operated by PJM. Hourly price 

market data from the WEST INT PJM trading hub is collected directly from PJM’s website. 

The system marginal cost that is represented by the locational marginal price (LMP) is used 

to estimate the change in value of the different angle combinations. The LMP reflects the 

patterns of load, characteristics of generating facilities, and physical limits of the 

transmission system at different locations (ISO New England, 2016). Actual 2010-2012 

hourly real-time LMPs are collected, resulting in three years-worth of hourly data, which 

together with the hourly solar generation data set were used to estimate the optimal azimuth 



44 

 

and tilt angles of stationary and single axis tracking solar panels that maximizes the total 

economic value over the three years of the study. Because in reality these angles are not 

adjusted at the field from year to year, the aggregated 3-year economic value approach 

provides an estimate of the average payoff to a given combination of angles. The 3-year 

economic value is obtained by first converting from nominal to real dollars (2016$) each 

of the three years revenue values and then aggregating them. Furthermore, due to known 

installation technical limitations on field for setting a configuration with higher tilt angles, 

only the tilt angle of the fixed ground mount array type is allowed to vary relative to the 

angles identified in the typical set up. For this array, the maximum tilt angle allowed is 25 

degrees.   

3.2 PV Solar Capacity within a Power System 

3.2.1 Load Net of Renewables 

The simulated 5-minute load minus the combination of simulated 5-minute solar and wind 

power output enables construction of a 5-minute time resolution load net of renewables 

dataset. Halamay et al. (2011) affirms that it is common to analyze the impact of a 

renewable resource within a system by subtracting its generation contribution from the load. 

For this study, three load net of solar plus wind series are constructed using Indiana’s 

annual load profiles and simulated data for various levels of solar and wind generation 

capacity and/or PV solar configurations. The three years of load data are used to capture 

the load variation across years and model the impacts of solar photovoltaic (PV) and wind 

generating capacity additions as if they are installed by 2035. These impacts are estimated 

for each of the three annual load profiles and then averaged.  

Since electric utilities cannot inventory electricity, they must generate power on demand. 

The load duration curve represents this phenomenon (Murphy et al., 1988). For this study 

three load duration curves (LDC) net of renewable generation are built by sorting the 5-

minute load net of renewable generation curves into descending order. This procedure is 

repeated for each of the three years of load profiles and for each of the scenarios presented 

in the next section. These LDCs are used for calculating the capacity level of two 
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conventional generating technologies needed to meet the electricity demanded within a 

determined number of 5-minuite periods. The chronological load net of renewable 

generation is also used for estimating the increase in system operation cost due to 

renewable generation.  

3.2.2 Scenarios Considered  

A base case and three alternative scenarios are designed to assess the implications of 

alternative levels of renewable capacity on the effective system generation capacity, energy 

generated by technology, and costs. The results of these four scenarios provide perspective 

on the impacts of integrating these resources at various penetration levels and/or with 

different PV solar system configurations (panel orientation and tilt, tracking technology, 

etc.).  

The base case incorporates the simulated 5-minute wind generation data scaled to the 

capacity level (1,281.5 MW) of all the existing PPAs. This scenario also includes simulated 

5-minute solar generation data scaled to the capacity level of the existing PV solar projects 

(192.6 MW) located within the identified eight zones in Indiana. This solar generation 

dataset is created using what is assumed to be the typical type of technology (e.g. array and 

module) and design for three different system configurations (e.g. fixed ground, single-

axis tracking, and commercial fixed rooftop) currently in place in different solar 

installations across the state.  

As an alternative, Scenario 1 examines the future impact of adding more wind and solar 

generation capacity.  Scenario 1 uses the same typical setup and angles as the base case, 

but adds about 3,125 MW of wind and 2,146 MW of solar capacity, which are the long-

term estimates presented by Indiana utilities in their latest Integrated Resource Plan (IRP) 

as their preferred resource expansion. Thus, for this scenario the capacities were scaled to 

a total of 4,407 MW for wind and 2,339 MW for solar.  

Scenario 2 is designed to identify the impact of only expanding PV solar capacity without 

any additions of wind generation power. For this scenario, the results are based on similar 

assumptions and angles as the ones used in Scenario 1, but assuming that utilities would 
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have solar generation as their only renewable resource option. Therefore, instead of adding 

3,125 MW of new wind capacity to the analysis, that number is added to the existing and 

new solar capacity identified in the IRPs. Thus, this scenario uses 5,464 MW of total solar 

generation capacity and only the existing wind capacity of 1,281.5 MW.  

The final scenario (3) considers the same 5-minute solar generation data set used in the 

Base Case Scenario but explores the impact of integrating up to 30% renewables electricity 

generation levels of all the projected Indiana annual electricity generation in 2035. This 

scenario emulates one of the targets considered by NREL in a scenario-based study (Bloom 

et al., 2016). For this scenario, solar and wind resources are assumed each to provide 

proportionally about 15% of the future total annual electricity of the state. These 

percentages in energy terms correspond to have additional 12,375 MW of solar capacity 

and 3,845 MW of wind capacity by 2035. Therefore, the total future installed capacity 

levels for solar and wind for this scenario equal 12,567 MW and 5,126 MW, respectively.   

3.2.3 Impacts of Integrating PV Solar on Other Generation Resources  

For this study, the approach of Davis et al. (2013) is adapted to develop a new method to 

estimate the costs of integrating solar and wind generation capacity into the power grid. 

Davis et al. calculated the impacts of incorporating only one intermittent generation 

resource (wind) on four specific aspects of the system. They were the effects in capacity 

requirements for peaking, cycling and baseload, the change of the energy (MWh) generated 

by each of these three type of resources, changes in capital cost because of the changes in 

the capacity needs of the generation portfolio mix, and the impacts in variable costs due to 

changes in fuel mix for the dispatched generators. In this study, the approach is modified 

to determine the impacts of adding only PV solar capacity and also adding solar capacity 

in combination with wind capacity into the Indiana’s power system, and optimize the 

utilization of conventional generation resources. The impacts of additional renewable 

generation capacity are calculated for capacity, energy, ramping costs due to additional 

ramping needs, capital costs, and variable costs. Unlike Davis et al. (2013), the present 

study models the commitment process as well as the dispatch process. The 
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commitment/dispatch model takes into account minimum and maximum generation, 

minimum up or minimum down time and ramping limits for all units.  

3.2.3.1 Impacts on Capacity   

This analysis finds the level of additional future capacity requirements by generation 

resource class needed by 2035 as renewable generation capacity is added to the power 

system. Indiana’s 2015 existing capacity levels plus planned capacity changes (approved 

planned generation additions and retirements) represent the starting point to project the 

resource types of current and future additions that will be in place by 2035.   

In order to determine what additional capacity level by technology will be needed in the 

future, the installed capacity is first organized by grouping all the generators based on the 

size and the type of fuel use or particular technology. The following are the representative 

generators technologies by specific groups: Coal (Conventional Steam Coal), IGCC 

(Edwardsport Coal Integrated Gasification Combined Cycle plant), Oil (Petroleum Liquids 

and Coke), NGST (Natural Gas Steam Turbine), NGCC (Natural Gas Combined Cycle), 

NGCT (Natural Gas Combustion Turbine), Hydro (Conventional Hydroelectric), Landfill 

(Landfill and other gases) and Nuclear (Donald C. Cook nuclear plant). The aggregated 

capacities of each of these groups are adjusted to reflect Indiana’s electric utilities’ 

ownership and jurisdictional shares of some generating plants. Since these shares are 

confidential, the adjustment is performed using the following approximations to the actual 

rates: 84% for Coal, Landfill and Nuclear, 100% for IGCC and NGST, 85% for Oil, and 

97% for NGCC, NGCT and Hydro. Finally, Coal, NGCC and NGCT units are then 

subdivided by unit size to approximate the commitment decisions on a unit-by-unit basis. 

Then, in order to account for forced outages (equipment unavailability due to unanticipated 

breakdown), the installed nameplate and summer capacity are derated using a Forced 

Outage Rate (FOR). Table 3-6 presents the resulting installed derated nameplate and 

derated summer generation capacity for Indiana by technology and generic generation 

types. FOR estimates presented in Table 3-7 are collected for each unit type from the SUFG 

and the 2016 Generating Unit Statistical Brochure, which is part of the Generating 

Availability Data System (GADS) program (NERC, 2016). 
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Table 3-6 Indiana Installed Derated Capacity by Generation Type 

Technology 
Generation 

Type 

Derated 

Nameplate 

Capacity 

(MW) 

Derated 

Summer 

Capacity 

(MW) 

Number 

of Units 

Average 

Unit Size 

(MW) 

Coal Baseload 14,667 13,181 43 341 

Small (1-199 MW)  1,735 1,560 17 102 

Medium (200-599 MW)  6,809 6,119 17 401 

Large (600-999 MW)  6,123 5,502 9 680 

IGCC Baseload 775 573 3 258 

Oil  Peaking 430 392 23 19 

NGST Baseload 564 534 3 188 

NGCC Baseload 2,104 1,956 14 150 

Small (1-179 MW)  529 492 7 76 

Large (180-400 MW)  1,575 1,465 7 225 

NGCT Peaking 3,619 2,914 55 66 

Small (1-59 MW)  863 695 21 41 

Medium (60-89 MW)  1,887 1,519 26 73 

Large (90-150 MW)  870 700 8 109 

Hydro Baseload 95 60 51 2 

Landfill Baseload 84 78 74 1 

Nuclear Baseload 1,896 1,717 2 948 

Total  24,233   21,405 268  
  

The installed conventional technologies are classified into two types of generic generation 

resources, which are used for resource requirements planning purposes: baseload and 

peaking.  Cycling (also known as intermediate) resources are excluded from consideration 

because they are becoming more difficult to differentiate from the other two resources as 

a result of their projected similarities in future operation and costs characteristics (SUFG 

2017b). Baseload plants are characterized by having low variable cost, high capital cost 

and limited ability to vary output in a short time. Because of these characteristics, this type 

of resource is utilized for continuous operation during most of the hours of the year. 

Peaking plants are characterized by having low capital cost, high variable cost and the 

highest level of flexibility to vary output that make them the appropriate resources for 

generating electricity during few hours of the year. It is hypothesized that additions of solar 

capacity will increase the need for both of these types of resources but mainly for peaking 

capacity.  

Based on the characteristics that represent the generic generation resources, the Coal 

conventional technology group is classified as baseload capacity. The same classification 
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is given to all the other conventional technologies except for NGCT and Oil plants, which 

are classified as peaking generating units. In order to model future resource additions, 

baseload resources are expected to be advanced natural gas-fired combined cycle (ANGCC) 

plants with a fixed nameplate capacity of 429 MW, and peaking units are expected to be 

advanced natural gas-fired combustion turbines (ANGCT) with a fixed capacity size of 237 

MW (EIA, 2016). The capacity levels of the identified resource additions are specified to 

be individual plants so that there is a better approximation to the unit-by-unit commitment 

problem. In this study, natural gas-fired combined cycle units are used instead of pulverized 

coal plants as the appropriate technology to represent baseload generation assets. This 

modification is considered appropriate because NGCC units are expected to be a lower cost 

option than Conventional Steam Coal technology in the future based on fuel price 

predictions and capital costs estimates reported by the Energy Information Agency (EIA). 

Furthermore, this determination was made by the SUFG (2017b) based on parameters such 

as capacity factor, projections of future fuel and equipment costs.  

Capacity additions of these two types of generation resources are determined for the 

various scenarios using the identified installed summer capacity (for planning purposes the 

installed capacity must meet Indiana’s peak demand which happens during the summer) 

and with different levels of PV solar and wind generation capacity. This study assumes no 

technological changes over time for any of the generation resources considered in the 

analysis.  

Capacity impacts are obtained for each of the three annual net of renewables load duration 

curves and then averaged for each scenario. At this stage it is assumed that this curve 

accurately represents a typical demand net of renewables, and that all of the solar and wind 

output is going to be used by the utilities for the resource capacity planning process. This 

is because utilities sign long-term contracts with solar project developers (this is similar to 

the wind power purchase agreement contracts signed by utilities) that force them to pay a 

preferential price for solar generation whether the power is needed or not. Since the 

variable cost for solar and wind is almost zero, it makes sense to use all the solar and wind 

generation to build the net of renewables load duration curves. This ignores the inherent 

characteristics of “must-run” baseload generators due to their limited ability to reduce 
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output. Furthermore, it is possible that in conventional power systems, at high penetration 

levels, solar PV output may reduce the load net of solar generation to the point that it could 

surpass the minimum level of generation coming from must-run generators. However, 

since solar PV represents only a small share from the total installed capacity in Indiana 

even with an aggressive capacity expansion plan, forcing curtailment due to excess PV 

solar generation is assumed not to occur in the analysis based on the capacity expansion 

model. Contrarily, this assumption is relaxed to allow curtailment of solar and wind 

resources in the commitment/dispatch analysis.  

The calculation of the overall capacity impacts considers two parts. The first part calculates 

the required capacity expansion levels to meet the expected demand in 2035 for the two 

resource technologies using a planning model originally proposed by Murphy et al. (1988). 

The second part includes a calculation of the potential additional capacity needed to cover 

the ramping capacity change.  

The model developed by Murphy et al. (1988) includes a deterministic mathematical 

program that uses a break-even total cost (fixed plus variable) analysis for three plant types 

in combination with a load duration curve to determine the least cost mix of capacity 

resources dispatched to meet power demand for every hour in a year. A modified version 

of this approach proposed by Davis et al. (2013) considered capacity running to meet a 

load net of wind curve, but not considering the ramping capacity needs calculation that is 

included in the second part of this section.   

Unlike the three generic generation types and the hourly LDC originally used in Murphy’s 

capacity expansion planning model, this approach uses two generic resources and a 5-

minute net of solar and wind LDC that is shown in the lower diagram of Figure 3-6. The 

horizontal axes of Figure 3-6 range from 0 to 105,120 and represents the total number of 

5-minute intervals in a year (8,760 hours per year times twelve 5-minute intervals per hour). 

The upper diagram of this figure shows the break-even cost curve with one break-even 

point corresponding to different levels of cumulative 5-minute intervals of operation during 

the year of the two conventional generic generation technologies. The slope of each of 

these lines represents the variable cost ($/MWh) of each technology. Meanwhile, the 
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intersection point of those lines with the vertical axis represents the annualized per unit 

capital cost ($/MW/Yr) for each of the two generation resources.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6 Break-even Cost and Net of Solar Load Duration Curve 

The new capacity requirements needed to meet the 2035 load net of solar and wind curve 

are estimated by finding the difference between the new capacity levels for the two 

generation resources resulting from the modified Murphy capacity expansion planning 

model and the installed (existing and planned) capacity levels. If the new baseload capacity 

requirements are less than the installed baseload capacity levels, then there is no need for 
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additional baseload capacity and the excess is recategorized as peaking capacity. When 

new baseload or peaking capacity is needed, the identified level of capacity is rounded up 

to the fixed nominal size capacity of the appropriate new plant.   

The identified capacity additions consider a percent reserve margin equal to the 

corresponding FOR estimates of each technology type. Previously, Davis et al. (2013) used 

a similar approach, but he applied a ten percent reserve margin for all the unit types as a 

method to limit the loss of load probability.5  

After determining the capacity expansion requirements needed to meet projected demand, 

an additional calculation is used to ensure that enough ramping capacity is available. That 

is, at this stage, the identified capacity requirements ignore the ramping down and ramping 

up capacity limits of the non-solar and non-wind generation technologies and the potential 

need for additional conventional capacity to respond to sudden short-term variations in the 

load net of solar and wind curve. Therefore, the technical limitations (e.g. minimum and 

maximum load and ramping limits) of the power plants are considered to determine the 

range of capacity levels of each of the generation resources available to serve the ramping 

capacity changes of the load net of wind and solar. Table 3-7 shows the technical minimum 

load and ramping rates by technology applied to the identified resources of the system. For 

this calculation, the maximum ramping up and down capabilities are assumed to be the 

same and were calculated by multiplying the ramp rates in percentage terms times the 

nameplate capacity (differently than in the first part where the summer capacity is used to 

focus the analysis in the annual peak which usually happens during the summer time in 

Indiana). The generators’ maximum load capacity is assumed to equal the nameplate 

capacity. The minimum load is calculated using the nameplate capacity and the minimum 

load rates presented in Table 3-7. Then, the load capacity levels for each generation 

resource technology is determined by finding the difference between the maximum and 

minimum generation limits and then comparing them to the calculated typical generator 5-

minute ramping capability levels. The lesser of the load and ramping capability of each 

technology is selected as the final generation capacity available to respond to ramping 

                                                 
5 Madaeni et al. (2012) defined the probability of a loss of load as the likelihood of an event where the load 

of the system is greater than the available generating capacity over a given time period.   
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variations. These capacity levels are aggregated to represent the maximum ramping 

capacity level available in the system. 

Table 3-7 Indiana Installed Capacity and Technical Parameters by Generation Type 

Units 

Vintage  

Technology Forced 

Outage Rate  

(% of 

nameplate 

capacity)* 

Minimum 

Load  

(% of 

derated 

nameplate 

capacity)** 

Ramping 

Rates (% of 

derated 

nameplate 

capacity /5-

min)*** 

Minimum 

uptime 

(Hours) 

Minimum 

downtime 

(Hours) 

New 

Units 

  
 

   

 Baseload 3.7 40 29 4 2 

 Peaking 14.9 43 68 2 2 

 Wind  0 100 0 0 

 Solar  0 100 0 0 

Installed 

Units 
 

 
 

   

 Coal 6.6 37 19 6 4 

 IGCC 3.7 60 29 4 2 

 Oil  8.4 33 67 4 3 

 NGST 14.9 40 33 5 3 

 NGCC 3.7 40 29 4 2 

 NGCT 14.9 43 68 2 2 

 Hydro 8.6 0 100 0 0 

 Landfill 5.0 0 100 0 0 

 Nuclear 2.4 34 26 59 21 
* FOR estimates are collected from NERC for all the generating unit types except Landfill gas units (NERC, 

2016). FOR estimates for Landfill gas units were provided by the SUFG using an average estimate of those 

units across Indiana. ** Maximum load assumed to be equal to the nameplate capacity therefore 100%. 

Minimum load values and minimum up- and downtimes are equal to the average of acceptable values in 

Table 27 (Schröder et al., 2013). *** Ramping rates are the average of acceptable values of rates in Table 26 

(Schröder et al., 2013). Hydro, landfill, solar and wind technologies assumed to have zero minimum load 

rates. Also, due to their fast response ability for ramping from zero to the level of generation available, 100% 

ramp rates are assumed. For solar and wind the levels of generation depend respectively on the availability 

of sunlight and wind resources at a given period.   

Since the one concern is the magnitude of the ramping levels, the ramping capacity level 

available is compared to the greatest drop and increase events (e.g. steepest ramping down 

or up event) of every 5-minute interval of the net of solar and wind load curve. This 

comparison determines whether supplementary capacity is required to satisfy ramping 

needs or not, and how much of this capacity is needed. Based on the characteristics of 

Indiana’s generation fleet and this simple back-of-the-envelope calculation of ramping 

capacity, even with significant solar and wind capacity additions, supplementary capacity 
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due to ramping events is not expected to be needed in the state. In the case that 

supplementary ramping capacity is needed, further technical and cost analysis of the type 

of generators to be installed (e.g. peaking, baseload, etc.) would be required.  Finally, the 

identified new capacity plus potential ramping capacity levels for each generation resource 

technology is used to calculate the impact on energy in the next section. 

3.2.3.2 Impacts on Capital Costs  

Plant costs used in this analysis are on an annualized basis in 2016 real dollars. The costs 

associated with new units are shown in Table 3-8 organized by generation type. Capital 

cost includes annualized overnight capital cost and fixed operating and maintenance (O&M) 

costs per year. Capital costs for installed units are sunk costs and not considered in this 

analysis. For new units, overnight capital and fixed O&M costs of advanced natural gas 

combined cycle (ANGCC) generators are assigned to baseload units and costs of advanced 

natural gas-fired combustion turbines (ACT) are assigned to peaking capacity. Costs 

collected for Onshore Wind and PV solar with fixed panels are respectively assigned to 

new wind and solar units. The conversion of the present overnight capital cost to a series 

of uniform annual future payments involves the use of the capital recovery factor. 6 

Overnight capital costs are annualized using a plant lifetime of 30 years for baseload and 

peaking (DOE, 2013), 24 year for wind, and 30 years for solar (NREL, 2016). A discount 

rate (interest rate) of 4.5% is considered for the capital recovery factor calculation as a 

financial investment assumption from a society perspective. In a previous analysis, a 

discounted cash flow model used this same interest rate as financial parameter (DOE, 2013).  

  

                                                 
6 The capital recovery factor formula is: 𝐴 = 𝑃 [

𝑖(1+𝑖)𝑁

(1+𝑖)𝑁−1
] , where A = Annuity , P = Present payment, N = 

Number of years, i = Interest rate (Steiner,1996) 
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Table 3-8 Annualized Capital, Variable, and Start-up Costs for Units by Generation Type* 

Units Vintage 
Generation 

Type 

Annualized 

Capital Cost 

(2016 

$/MW/Yr) 

Variable Cost 

(2016 $/MWh) 

Start-up Cost 

(2016 $/MW) 

New Units     

 Baseload 77,531 28.93 43.79 

 Peaking 48,976 52.60 55.32 

 Solar  179,826 0 0 

 Wind  168,430 0 0 

Installed Units     

 Small Coal N/A Confidential 107.08 

 Medium Coal N/A Confidential 82.53 

 Large Coal N/A Confidential 57.97 

 IGCC N/A Confidential 43.79 

 NGST N/A Confidential 44.15 

 NGCC N/A Confidential 43.79 

 NGCT N/A Confidential 55.32 
* Indiana specific overnight capital costs for new baseload, peaking, wind and solar units are obtained from 

Table 8-2, Table 10-2, Table 14-2, and Table 15-4. Capital cost for existing units are sunk costs and irrelevant 

for this analysis. Fixed and variable O&M for new units were collected from Table 1 (EIA, 2016). Variable 

O&M costs for existing units come from a confidential technical assessment guide (EPRI, 1989) and from 

reports of the State Utility Forecasting Group (SUFG (2017a). Because variable costs for existing units are 

equal to the sum of confidential variable O&M costs and publicly available fuel prices, this table does not 

present these costs numbers. Fuel prices are 2035 projections for the East North Central Region (EIA, 2018). 

Variable costs for solar and wind were considered as zero. Start-up costs are equal to the average of 

acceptable start-up costs of hot and warm start values from Table 25 (Schröder, 2013). 

The total capital cost for each of the scenarios is estimated using the resulting new capacity 

requirements obtained from the two-step (capacity expansion planning and back-of-the-

envelope ramping needs) model. The specific additions for each generation resource type 

together with their specific capital costs provide estimates of the total system capacity cost 

for the base case which are then compared to the estimated total costs of the alternative 

scenarios.  

In order to account for the potential future capital cost reductions of solar and wind 

technologies, two additional cost projections for each of these resources are included in 

this analysis. Specifically, 2035 overnight and fixed O&M costs projections for median 

(median of literature projections of future costs) and low (low bound of literature 

projections of future costs) technology performance scenarios are collected from NREL 

2018 Annual Technology Baseline (NREL, 2018b). Capital costs values for utility PV solar 
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technologies in Chicago and land-based wind technologies within the TRG4 resource 

group are used to reflect the variation in solar resource and wind speed ranges in Indiana. 

The rate of change between the 2035 capital costs of NREL’s “constant” or base case 

scenario and alternative scenarios would provide an approximate measure of future 

technology cost reductions. Assuming that the capital costs for solar and wind presented in 

Table 3.8 correspond to the capital costs of NREL’s “constant” scenario, the annualized 

capital cost for solar would decrease by approximately 33% (to $120,867/MW/Yr) in the 

median scenario and 53% (to $85,334/MW/Yr) in the low scenario. On the other hand, the 

annualized capital cost for wind would decrease by 17% (to $140,164/MW/Yr) in the 

median scenario and 49% (to $86,058/MW/Yr) in the low scenario. These reductions in 

solar and wind technology costs reflect different levels of adoption of innovations but they 

still cannot make these resources cheaper than conventional generation.  

3.2.3.3 Impacts on Energy 

In general, for power system operations purposes, the energy impacts are estimated using 

the generation capacity of each technology or resources type available in the system.  For 

this analysis, the energy impacts of incorporating solar and wind generation in the Indiana’s 

power system are estimated using a minimum cost economic commitment/dispatch model. 

This model is used to minimize the variable and start-up costs of meeting load and to find 

the optimal mix units by technology that are committed and dispatched in every day of the 

year.  

Table 3-8 presents the variable costs for new units and the start-up cost parameters for 

installed and new units used in this optimization model. Variable costs, that include fuel 

prices and variable O&M costs, are associated with each generation resource technology 

based on generators’ representative characteristics (e.g. age, technical specifications). Fuel 

costs are collected from the 2018 EIA Annual Energy Outlook which presents the 

projections of fuel prices for East North Central region in the U.S. Variable O&M costs 

are obtained from EIA, the confidential Technical Assessment Guide (EPRI, 1989), 2017 

Renewables Report (SUFG 2017a) and utilities’ IRPs. These costs are separately defined 

for installed and new units because newer technologies are expected to be more efficient 

due to lower heat rates and thus to have lower variable costs (Davis et al., 2013). 
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Furthermore, a variable O&M cost distinction for installed coal units is considered to better 

represent the difference in heat rate characteristics between large and medium/small units. 

Similarly to the distinction made for fixed O&M costs, variable costs of advanced natural 

gas combined cycle (ANGCC) and advanced combustion turbine (ACT) generators are 

chosen to represent respectively the costs for new baseload and peaking resources. Variable 

costs for solar and wind installations are assumed to be zero.   

Power plant cycling or start-up costs capture the O&M cost increase in response to the 

cycling of a unit. According to Kumar et al. (2012) cycling refers to the operation of electric 

generating plants at varying load levels, including load following, on/off status, and 

minimum load operation, due to changes in system load requirements. There are three types 

of start-up costs corresponding to each of the cold, warm and hot start-up times of 

conventional energy generation facilities. A cold start considers a power plant that has been 

shut down for more than 50 hours. A warm start is for a plant that has been turned off for 

more than 8 hours and less than 50 hours. Hot starts are for a power plant that has been 

switched off within 8 hours of the next start-up (Schröder, 2013). Cost of start-up fuels and 

depreciation of components (greatly observable in a cold start) are among the factors that 

contribute to the total start-up costs. Since the focus of the cost minimization process is on 

determining the units scheduled to operate during each day of the year, it is assumed that 

the units would only have either a warm or a hot start in those 24 hours. Therefore, the 

start-up cost estimates used in this analysis are equal to the average of the warm and hot 

start-up costs of each unit type. Thus, these estimates only capture the start-up fuel cost 

component of the total start-up costs.     

According to Schröder (2013), the minimum up- and downtimes (or online/offline times) 

are helpful in modeling the power plant unit commitment and dispatch problem. These 

times are used to indicate the limitations on flexibility of thermal units but, in principle, 

they can be considered as economic limits rather than ‘hard’ physical limits. That is, the 

interest of operators is to keep a low number of start-ups and shut-downs in order to avoid 

excessive thermal stress on power plant equipment. Table 3-7 show the minimum up- and 

downtime parameters by technology type used in the model.  
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The approach developed in this analysis is partially similar to the method used by Davis et 

al. (2013). He used a minimum cost dispatch model to determine the impact of wind 

generation additions allowing wind curtailment and incorporating operating ramping limit 

constraints but not minimum generation limits for the non-wind generation technologies. 

The main distinction is that this analysis determines what conventional generation units are 

committed to run by paying attention to their minimum generation constraints. Furthermore, 

in this study there are differences in the time intervals of the data (10-minute vs 5-minute 

periods) and the types of ramping limits considered in the model. The approach used in 

this analysis dispatches to a load net of solar and wind, and considered other technical and 

cost features (e.g. minimum output levels, minimum uptime and downtime, and start-up 

costs) affecting the economic generation dispatch problem. However, some aspects such 

as start-up and shut-down ramp constraints, specific start-up times, operating ramping costs 

and the cost of the transmission and distribution systems are not modeled here.   

A mixed-integer linear programming method is applied to minimize the cost of generating 

electricity to meet the future demand for each 5-minute period chronologically ordered and 

the possibility of wind and solar curtailment is allowed. This proposed combined unit 

commitment and dispatch formulation minimizes the operational cost considering the 

specific technical and economical limits on the committed generating units. Unit 

commitment (UC) is a mathematical optimization problem used in the electrical power 

production system to determine the optimum operation schedule of generating units to 

satisfy a varying demand for electricity at least possible operating cost over a given period 

of time (Bhardwaj et al., 2012). According to Morales et al. (2013) the mixed-integer linear 

programing (MILP) (some decision variables are not restricted to be integers) has become 

a popular approach for solving this type of problem due to the improvement in MILP 

solvers based on the branch-and-cut algorithms. For this study, the proposed MILP model 

formulation is solved using CPLEX under GAMS with 1.0% relative optimality tolerance. 

This means that the branch-and-cut algorithm terminates when the difference between the 

objective values for the best possible solution and the best integer feasible solution is 

reduced to one percent.  
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The original MILP formulation is intended to solve a daily cost minimization problem so 

it would determine the units committed and dispatched from hour 1 to hour 24 of each day 

of the year. However, from an annual perspective, this would not consider the potential 

discontinuity between the units that are online/offline at the end of a day and beginning of 

the next day. The possibility of having inconsistencies with the units running or not from 

one day to the next would have an impact in the estimation of the total annual costs and 

fail to enforce the minimum up/downtime constraint assumptions. In order to overcome 

this issue, the power system operation cost is minimized for each period of three 

consecutive days that roll across the year recording the results of the middle day. The only 

exceptions are for the first and last periods of the year where the results for day 1 and 2 and 

results for day 2 and 3 are used respectively for those specific periods. In this rolling three-

day window methodology, the units that resulted to be committed/dispatched in the last 

hour of the first day of one period are fixed to be online in the first hour of the first day of 

the next three-day period to reduce the discontinuity problem.  

The objective function for each of the three-day windows of a year is shown in equation 

(5). This equation is defined as the sum of the variable cost and start-up cost components. 

For the first component, the variable cost is expressed as a linear function of the power 

output. The second component includes a start-up variable that multiplies the start-up cost, 

which is also a function of the nameplate capacity of a specific unit. 

 

                                       min ∑ ∑ 𝑉𝐶𝑖𝐺𝑖,𝑡

𝐼

𝑖

𝑇

𝑡

 +  ∑ ∑ ∑ 𝑂𝑢,𝑖,ℎ𝑁𝑖𝑆𝐶𝑖

𝑈

𝑢

  

𝐼

𝑖

𝐻

ℎ

                                  (5) 

     

where 

i = Index for a non-solar and non-wind generator technology types; 

I = All non-solar and non-wind types of generator technologies;  

u = Index for generating unit number within each of the non-solar and non-wind technology types; 

U = Maximum number of generating units among all the non-solar and non-wind technology types 

(74 units); 

T = Total 5-minute intervals in a 3-day period (equal to 864 intervals); 
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t = Index of 5-minute interval; 

Gi,t = Generation level of technology type i in period t; 

VCi = Variable cost of generating technology type i; 

h = Index of hour; 

H = Total number of hours in a 3-day window (equal to 72 hours);  

Ou,i,h  = Start-up of unit number u of technology type i in hour h. Equal to 1 if the unit starts up 

and has been previously offline; 

Ni = Nameplate capacity of technology type i; and 

SCi  = Start-up cost of technology type i.  

This objective function is optimized subject to a set of constraints that capture the 

operational limitations and characteristics of the power system. Since demand is given, a 

constraint (6) is imposed to require the total conventional generation of electricity to equal 

the 2035 load net of wind and solar at each 5-minute interval. Furthermore, solar and wind 

generation may be dispatched respectively up to the simulated solar and wind generation 

level or totally curtailed at each time interval via constraint (7) and (8). The dispatch of the 

non-solar and non-wind generating resources may be between the maximum (equal to 

nameplate capacity) and minimum generation limits of the capacity levels determined in 

the capacity calculation section for each generation resource with  an “online” status (9). 

Note that while Ou,i,h is not restricted to be binary, optimal values of all of these variables 

will always be either 0 or 1 due to model structure. The typical minimum generation limits 

presented in Table 3-7, expressed in percentages of total installed and new derated 

nameplate capacity, are used for each of the generation resource types. The following 

constraint (10) reflects the restrictions of generating units with an “online” status to 

increase or decrease power output. Typical 5-minute ramping limits are set as a percentage 

of the derated nameplate capacity for each of the generation technologies (see Table 3-7, 

above). Another constraint (11) guarantees consistency between the integer start-up 

variables and the binary status variable so the variables take the appropriate values when 

the units are online or offline. The status variable Xu,i,h is a binary variable that takes a 

value of 1 when the unit generates power and zero otherwise. This variable is also used to 

map and tie the online units from hour 24 of the first day of a previous 3-day window to 
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hour 1 of the first day of the next window (12). Finally, the following equations (13) and 

(14) ensure that the unit operates within the minimum up- and downtimes limits. These 

constraints guarantee the minimum number of hours that the unit has to be online and 

offline according to the parameters presented in Table 3-7. 

                          ∑ 𝐺𝑖,𝑡 + 𝑆𝑡 + 𝑊𝑡 = 𝐿𝑡                                                                                           (6)

𝐼

𝑖

 

0 ≤ 𝑆𝑡 ≤ 𝑆𝑡
𝑚𝑎𝑥                                                                         (7)                  

0 ≤ 𝑊𝑡 ≤ 𝑊𝑡
𝑚𝑎𝑥                                                                               (8) 

𝐺𝑢,𝑖
𝑚𝑖𝑛 ∑ 𝑋𝑢,𝑖,ℎ

𝑈

𝑢

≤ 𝐺𝑖,𝑡 ≤ 𝐺𝑢,𝑖
𝑚𝑎𝑥 ∑ 𝑋𝑢,𝑖,ℎ

𝑈

𝑢

  ∀ℎ, 𝑡 ∈ [((ℎ − 1) × 12) + ℎ, ℎ × 12]               (9) 

−𝑅𝑢,𝑖 ∑ 𝑋𝑢,𝑖,ℎ ≤ 𝐺𝑖,𝑡 − 𝐺𝑖,𝑡−1 ≤ 𝑅𝑢,𝑖 ∑ 𝑋𝑢,𝑖,ℎ    ∀ℎ, 𝑡 ∈ [((ℎ − 1) × 12) + ℎ, ℎ × 12]     (10)    

𝑈

𝑢

𝑈

𝑢

 

  𝑂𝑢,𝑖,ℎ − 𝐹𝑢,𝑖,ℎ = −𝑋𝑢,𝑖,ℎ−1 + 𝑋𝑢,𝑖,ℎ                                                        (11) 

                                                𝑋𝑢,𝑖,ℎ = �̅�𝑢,𝑖,ℎ−1       ∀ℎ ∈ [1]                                              (12) 

                             𝑋𝑢,𝑖,ℎ ≥ ∑ 𝑂𝑢,𝑖,ℎ

𝐻

ℎ

       ∀𝑢, 𝑖, ℎ ∈ [ℎ −  𝑀𝑈𝑖 , ℎ]                                                      (13) 

                                      1 − 𝑋𝑢,𝑖,ℎ ≥ ∑ 𝐹𝑢,𝑖,ℎ

𝐻

ℎ

        ∀𝑢, 𝑖, ℎ ∈ [ℎ − 𝑀𝐷𝑖  , ℎ]                                     (14) 

 

where 

St = Solar generation in period t; 

𝑆𝑡
𝑚𝑎𝑥 = Maximum solar generation in period t; 

Wt = Wind generation in period t; 

𝑊𝑡
𝑚𝑎𝑥 = Maximum wind generation in period t; 
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Lt = Load in period t; 

𝐺𝑢,𝑖
𝑚𝑖𝑛 = minimum generation level of unit number u of technology type i; 

𝐺𝑢,𝑖
𝑚𝑎𝑥 = maximum generation level of unit number u of technology type i; 

Xu,i,h  = Commitment status of unit number u of technology type i in hour h. Equal to 1 if the unit 

is online and 0 otherwise; 

�̅�u,i,h-1  = Fixed commitment status of unit number u of technology type i in hour 24 of first day 

of previous 3-day window. Equal to 1 if the unit is online and 0 otherwise; 

𝑅𝑢,𝑖  = ramping level of unit number u of technology type i; 

Fu,i,h = Shut down of unit number u of technology type i in hour h. Equal to 1 if the unit shuts 

down and has been previously online; 

MUi = Minimum up time parameter of unit i; and 

MDi = Minimum down time parameter of unit i. 

Energy impacts are determined by finding the difference between the energy generated by 

each technology type to meet the load for the base and for the alternative cases. This 

difference provides the impact of adding solar and wind generation on the optimal amount 

of energy supplied by each technology and for different cases.  

3.2.3.4 Impacts on System Operations Costs 

Since the model minimizes the operational cost for each 3-day window during the year, the 

daily variable and start-up costs are estimated using only the operational results 

corresponding to the middle day (except for the first and last window of the year where the 

first two days and last two days were used respectively) of each 3-day window. That is, the 

daily variable cost is calculated considering the cost values reported in Table 3-8 and the 

energy generated by each generation resource type in each middle day of every 3-day 

window of each year. On the other hand, the daily start-up cost for each technology type is 

estimated accounting for the start-up cost values (See Table 3-8) and the number of units 

turned on (variable Oi,h = 1) within the 24 hours of that middle day of that generation 

resource. Then, all of the 365 daily variable and start-up costs are summed across days and 

technology type to find the total annual values for both cost categories. These calculations 

are done for the three annual load profiles and the results are averaged for each scenario. 
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The difference between the averaged variable and start-up costs of the base scenario and 

other scenarios represents the impact on the system costs due to changes in operations as 

the result of additions of wind and solar capacity expansions. 

3.2.3.5 Estimation of PV Solar and PV Solar plus Wind Capacity Value  

The estimation of the capacity value of PV solar and wind resources uses the same capacity 

expansion model explained previously for measuring the impact of PV solar generation on 

the capacity needs for other generation resources. This methodology is used as an 

approximation technique to estimate the capacity value of a solar generator or power plant 

with and without wind in Indiana from a generator reliability perspective. The capacity 

expansion model provides the capacity levels of baseload and peaking resources needed in 

the system in order to accommodate various combinations of solar and wind capacities 

while meeting the same annual system peak load. For this analysis, the model is applied to 

each of the three 5-minute net of renewables LDCs profiles built for each year of the 2010-

2012 period. These LDCs considered the Indiana aggregated 5-minute simulated solar 

generation data set created using the typical design configuration for the state. They also 

account for the 5-minute simulated wind generation data set for the state. 

In order to account for diminishing marginal solar PV capacity values and their sensitivity 

to increasing levels of PV solar penetration, a handful of scenarios for each of the LDCs 

profiles are considered to obtain a set of several baseload and peaking capacity levels, as 

different levels of renewable generation capacity are added to the generation mix. Four 

scenarios are selected for this analysis to determine the capacity value differences between 

having 0 MW (no wind), 500 MW, 1,000 MW, and 2,000 MW of wind capacity. All of 

these four scenarios include various solar capacity levels, which are obtained by scaling 

from the installed solar capacity of 193 MW to a total of 4,000 MW in steps of 200 MW 

(e.g. 193 MW, 200 MW, 400 MW,…, 3,800 MW, 4,000 MW). The same levels of scaled 

capacities are used in each scenario and for each LDC profile to make the results of the 

scenarios comparable.  

The resulting capacity requirement levels for each type of resource at every solar capacity 

step are averaged across years within each scenario (e.g. PV solar, PV solar + 500 MW of 
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Wind, etc.). Then, the capacity value in terms of baseload/peaking resources at each 

specific solar capacity step is estimated by subtracting the averaged capacity level of that 

step from the capacity level of the previous step and dividing by 200 MW to get a capacity 

value per MWac of solar capacity.  Finally, a complete series of capacity values in terms 

of baseload and peaking resources is calculated for each of the solar capacity levels and 

four alternative wind capacity levels scenarios.  
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CHAPTER 4. RESULTS 

This chapter presents the results obtained to accomplish the different objectives of this 

research. The first section includes the optimization of tilt and azimuth angles with 

alternative objectives maximizing annual energy or economic revenue for the three system 

configurations described in Chapter 3. The second section presents the capacity, energy 

and cost impacts of incorporating solar and wind capacities in each of the four proposed 

scenarios, plus a comparison of these impacts across them. The last section of this chapter 

shows the results obtained from increasingly scaling up the solar and wind plus solar 

capacity levels and their corresponding capacity values.  

4.1 Comparison of Results for Three System Configurations 

4.1.1 Tilt and Azimuth Optimal Configuration Results  

Table 4-1 displays the tilt and azimuth angles for three different system configurations 

organized by zone, array and module type. This table presents a comparison of the 

identified typical tilt and azimuth angles used in solar generation projects across Indiana, 

and the optimized angles for each of the configurations that either generates the maximum 

annual electricity output or the maximum 3-year (2010-2012) aggregated revenue. 

Typically, the tilt angles observed in the solar projects across all the zones in the state have 

respectively an average of 23 (range from 20 to 25 degrees), 10 and 0 degrees for the fixed 

open rack, fixed roof mount, and single axis arrays. Independently of the zone or the 

module type of the solar project, the results show that the tilt angles that maximize solar 

generation output and revenue are 25, 10 and 0 degrees for fixed open rack, fixed roof 

mount, and single axis arrays, respectively. These angles represent the upper bounds in the 

optimization process, that reflect the technical infeasibility of using greater tilt angles in 

the field. Therefore, relaxation of those tilt angles constraints would result in higher annual 

generation and revenue.  
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No constraints were imposed in the optimization for determining the optimal azimuth 

angles. The typical orientation of the solar panels in Indiana is directly toward the south 

(180˚) but the azimuth angles that would produce the highest electricity generation range 

from 177 to 182 degrees across zones, array and module types. However, across these 

parameters, the azimuth angles that would maximize the 3-year economic value range from 

180 to 190.5 degrees. Therefore, in Indiana, the system configuration that maximizes the 

annual generation output would have solar panels practically oriented straight south similar 

to the state’s typical configuration, but more oriented to the east compared to the maximum 

revenue configuration. Considering the results, across zones and technology types, the 

azimuth angles of the configuration that maximizes output are about 1 degree and 5 degrees 

lower than the angles respectively in the typical configuration and in the optimal economic 

value configuration. In general, the latter configuration has panels oriented more toward 

the west, with an average azimuth angle of about 4 degrees higher than the state’s typical 

system configuration.  

 

The results also show that there is no significant difference between the configurations of 

projects located in the northern, middle and southern regions within the state. However, a 

few regions with specific array types show some differences from the rest. Regions 1 and 

8 with fixed open rack, and region 6 with single axis array types, consistently have solar 

panels facing more toward the west for both the maximum output and revenue 

configurations, relative to the typical configuration case. For the rest of the regions and 

array types, except for single axis tracking array type in region 7, the configuration that 

maximizes output and economic values shows contrasting results with opposite 

orientations of panels, facing respectively more toward the east and west compared to 

azimuth angles of the typical configuration. 
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Table 4-1 Typical and Optimal Angles for Three System Configurations by Zone    

Zone Array Type 
Module 

Type 
Tilt Angles (Degrees) Azimuth Angles (Degrees) 

   
Typica

l 

Max. 

Outpu

t 

Max. 

Econ. 
Typical 

Max. 

Output 

Max. 

Econ. 

1 Fixed open rack Standard 23 25 25 180 181.0 190.5 

2 Fixed open rack Standard 23 25 25 180 177.0 184.0 

 Fixed open rack Thin film 23 25 25 180 177.5 184.5 

 Fixed roof mount Standard 10 10 10 180 177.5 184.0 

3 Fixed open rack Standard 23 25 25 180 178.5 185.5 

4 Fixed open rack Standard 23 25 25 180 179.5 186.5 

5 Fixed open rack Standard 23 25 25 180 178.5 183.5 

 Single axis 

tracking 

Standard 0 0 0 180 179.0 181.5 

6 Fixed open rack Standard 23 25 25 180 178.5 184.5 

 Single axis 

tracking 

Standard 0 0 0 180 181.5 182.0 

 Fixed roof mount Standard 10 10 10 180 178.5 184.0 

7 Fixed open rack Standard 23 25 25 180 179.0 185.0 

 Single axis 

tracking 

Standard 0 0 0 180 179.0 180.0 

8 Fixed open rack Standard 23 25 25 180 182.0 186.5 

 Single axis 

tracking 

Standard 0 0 0 180 179.0 181.0 

   Average (Degrees) 

 Fixed open rack  23 25 25 180 179.1 185.6 

 Fixed roof mount  10 10 10 180 178.0 184.0 

 Single axis 

tracking 

 0 0 0 180 179.6 181.1 

 

Across all the zones, the results indicate that the azimuth angles for single axis arrays would 

require a small adjustment of only about ±1 degree from the typical azimuth angle (180˚), 

whether the objective is to maximize generation output (-0.4˚) or economic value (+1.1˚). 

In order to achieve the maximum economic value, on average, solar projects with fixed 

open rack and roof mount arrays would respectively require azimuth angles to be about 5.6 

degrees and 4.0 degrees higher than the angles in a typical configuration. The deviations 

from the typical azimuth angles for those arrays are lower if the objective is to maximize 

annual electricity generation (-2˚ for fixed roof mount and -0.9˚ for fixed open rack). 
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Therefore, the fixed open rack and roof mount arrays due to their lack of sun tracking 

ability would need a greater azimuth angle adjustment from the typical configurations, 

compared to the projects with single axis arrays, for obtaining the maximum revenue from 

the electricity generated. That is, due to the pivoting mechanism of the single axis array, 

the solar panels of this array would need small orientation adjustments independently of 

their location in Indiana.  

4.1.2 Optimal Electricity Generation and Revenue Results 

This section presents the annual electricity and 3-year average economic values in 2016 

dollars obtained for the three optimal system configurations. These values and the percent 

changes for the referred optimal system configurations are displayed in Table 4-2, 

organized by zone, array and module type identified in Indiana. According to these results, 

if all the solar projects in the state had an optimal configuration with the objective of 

maximizing annual energy (revenue), they together would produce on average about 0.30% 

(0.23%) more electricity compared with projects using the typical system configuration. 

On the other hand, these same projects with  maximum output and revenue system 

configurations would respectively generate on average  0.18% and 0.25% more annual 3-

year average revenue compared to the revenue obtained by a project with the typical 

configuration.  

  



69 

 

Table 4-2 Annual Energy and Revenue for Three System Configurations by Zone* 

Zone Array Type 
Module 

Type 

Annual Energy (GWh) From 

192.6 MW Solar Capacity 
Annual Revenue (million $) 

   Typical 
Max. 

Output 

Max. 

Econ. 
Typical 

Max. 

Output 

Max. 

Econ. 

1 Fixed open rack Standard 10.847  10.909  10.886  0.517  0.520  0.521  

    (0.57) (0.35)  (0.48) (0.70) 

2 Fixed open rack Standard 1.636  1.642  1.640  0.079  0.079  0.080  

    (0.36) (0.26)  (0.18) (0.29) 

 Fixed open rack Thin film 18.655  18.722  18.702  0.910  0.912  0.913  

    (0.36) (0.25)  (0.18) (0.30) 

 Fixed roof mount Standard 0.706  0.706  0.706  0.034  0.034  0.034  

    (0.01) (-0.04)  (-0.03) (0.02) 

3 Fixed open rack Standard 18.596  18.657  18.637  0.895  0.897  0.897  

    (0.33) (0.22)  (0.17) (0.27) 

4 Fixed open rack Standard 4.616  4.633  4.628  0.223  0.223  0.224  

    (0.36) (0.25)  (0.21) (0.30) 

5 Fixed open rack Standard 11.576  11.624  11.617  0.552  0.553  0.554  

    (0.41) (0.35)  (0.25) (0.30) 

 Single axis tracking Standard 17.307  17.307  17.306  0.826  0.826  0.826  

    (0.00) (-0.01)  (-0.01) (0.00) 

6 Fixed open rack Standard 106.239  106.636  106.55

0  

5.120  5.131  5.134  

    (0.37) (0.29)  (0.21) (0.29) 

 Single axis tracking Standard 23.305  23.305  23.305  1.126  1.126  1.126  

    (0.00) (0.00)  (0.01) (0.01) 

 Fixed roof mount Standard 21.608  21.609  21.601  1.050  1.049  1.050  

    (0.00) (-0.03)  (-0.01) (0.02) 

7 Fixed open rack Standard 21.297  21.370  21.354  1.022  1.024  1.025  

    (0.34) (0.26)  (0.19) (0.27) 

 Single axis tracking Standard 3.296  3.296  3.296  0.158  0.158  0.158  

    (0.00) (0.00)  (0.00) (0.00) 

8 Fixed open rack Standard 39.784  39.949  39.930  1.894  1.900  1.901  

    (0.42) (0.37)  (0.33) (0.38) 

 Single axis tracking Standard 3.989  3.989  3.988  0.190  0.190  0.190  

    (0.00) (0.00)  (-0.01) (0.00) 

Total: 303.458  304.354  304.14

7  

14.597  14.624  14.633  

Difference of totals from typical:  0.896  0.689   0.027  0.036  

Percent change of totals from typical:  (0.30) (0.23)  (0.18) (0.25) 

   Average Percent Change (%) 

 Fixed open rack   (0.39) (0.29)  (0.25) (0.34) 

 Fixed roof mount   (0.00) (-0.03)  (-0.02) (0.02) 

 Single axis tracking   (0.00) (0.00)  (0.00) (0.00) 

* Numbers in parenthesis are the percent change of the values relative to the typical configuration.  
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If all the solar projects (192.6 MW) in Indiana move away from the typical system 

configuration to either of the two optimal configurations, the annual average increase in 

revenues would be about $26,718 for the annual maximum output configuration, and 

$36,240 for maximum the 3-year revenue configuration. Meanwhile, if all these solar 

projects across the state were adjusted from a typical system configuration to a 

configuration that maximizes annual output and economic value, the annual electricity 

generation would increase by 896.2 MWh and 689.4 MWh, respectively. In perspective, 

these increases in annual electricity generation would be sufficient to provide electricity 

for approximately 77 and 59 additional residential homes7 in the state. 

In percentage terms, the greatest revenue benefits of readjusting the azimuth and tilt angles 

occurs in Zone 1, followed distantly by Zone 8. In Zone 1, the revenues would increase 

around 0.48% and 0.70% due the switching from a typical configuration to a configuration 

that maximizes annual power output and economic value, respectively. Meanwhile, the 

greatest percentage in annual energy changes, within the maximum output configuration, 

occurs in Zone 1 with an average of 0.57% increase when the tilt angles are adjusted from 

23 to 25 degrees and azimuth ones from 180 to 181 degrees. However, within the optimal 

economic value configuration, Zone 8 shows the greatest average increase (0.37%) in 

annual energy when compared with the energy generated with a typical configuration in 

the same zone.    

The type of array used by the solar projects in Indiana, independently of their location, has 

a direct impact on annual energy rate of change of the two optimal system configurations.  

In that sense, a modification of the system configuration, from typical to maximum output 

and revenue configurations, considerably affects the electricity generated by solar projects, 

with fixed open racks arrays showing respectively an average percent increase of 0.39% 

and 0.29%.  However, the impact on annual energy due to variations of the system 

configurations is almost unnoticeable in solar projects with fixed roof mount (range from 

-0.03% to 0%) and single axis arrays (0%).  

                                                 
7 In 2016, according to EIA, the average annual electricity consumption for an Indiana residential customer 

was 11,705 kWh. https://www.eia.gov/electricity/sales_revenue_price/ 
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Finally, the results also show that on average the fixed open rack array has also a bigger 

impact on the annual revenue change than the other two arrays. Solar power plants with 

fixed open rack arrays would increase the annual revenue by 0.25% and 0.34% if a typical 

setup were adjusted to maximize annual electricity generation and revenue, respectively.  

Changes of the azimuth and tilt angles in a fixed roof mount and single axis arrays would 

respectively have a slightly (±0.02%) to none impact on the annual revenue for solar 

projects switching from a typical system configuration to an optimal energy production or 

economic value configuration.  

4.2 Results for Solar and Wind Additions Scenarios 

The following section presents the projected impacts on capacity, energy and costs resulted 

from scaling solar and wind capacities in proportion to their installed capacity levels. The 

focus of this section is to compare the impacts across the three alternative scenarios with 

the findings of the Base Case Scenario.  

For all the scenarios considered in this analysis, the results are organized and presented by 

representative technology or fuel type (e.g. one category named Natural Gas Baseload 

includes the values from NGST and NGCC technologies).  

It is important to highlight that the relative optimality tolerance used to solve the 

commitment/dispatch model for one year of the Base Case Scenario was relaxed to 2% due 

to extremely long solving time. This change is considered to have no significant impact in 

the final average value across years for that scenario and for the comparison analysis 

between scenarios.  

4.2.1 Capacity Impacts Results  

Table 4-3 summarizes the total installed capacity requirements and the total energy that 

must be produced by each resource type in 2035. At the current solar and wind capacity 

levels, the capacity planning results indicate a need for 2,291 MW of new resources by 

2035. All of these identified capacity additions are made up of only new peaking resources, 

because no added baseload capacity is required in the future for the base case or any other 
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scenario. The peaking capacity requirements for all scenarios are lower relative to the base 

case. Furthermore, the future capacity addition of 5,271 MW of renewable resources would 

increase the solar and wind combined contribution to the state’s total energy generating 

capacity from about 5% in the Base Case Scenario to 20% in Scenarios 1 and 2. This would 

reduce the contribution of new peaking resources to Indiana’s 2035 total capacity by more 

than half, going from about 8% in the base case to only 3% in both scenarios. Although 

this contribution, in percentage terms, is the same in both scenarios, the requirements of 

new peaking capacity differ. When only PV solar generation capacity is added into the 

system (Scenario 2), the peaking capacity required is higher (1,106 MW) than the one 

needed (869 MW) when the same level of renewable capacity is added with a mix of solar 

and wind power (Scenario 1). 

Table 4-3 Annual Capacity and Energy for Alternative Solar and Wind Capacity Levels  

 Installed Capacity in 2035 (MW)* 
 

Energy Generated in 2035 (GWh) 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Coal 15,700 15,700 15,700 15,700  98,928 85,575 92,074 70,786 

IGCC 805 805 805 805  6,578 5,896 6,354 3,783 

Oil  469 469 469 469  1 1 1 0 

NG 

Baseload 

3,063 3,063 3,063 3,063  
1,668 921 944 376 

NGCT 4,253 4,253 4,253 4,253  88 46 49 17 

Hydro 103 103 103 103  827 827 827 784 

Landfill 88 88 88 88  690 581 657 403 

Nuclear 1,943 1,943 1,943 1,943  16,610 16,610 16,610 15,978 

New 

Baseload 
0 0 0 0 

 
0 0 0 0 

New 

Peaking 
2,291 869 1,106 395 

 
501 76 79 9 

Solar PV 193 2,339 5,464 12,567  303 3,681 8,600 19,449 

Wind 1,282 4,407 1,282 5,126  4,912 16,891 4,912 19,519 

Total 30,189 34,039 34,275 44,512  131,105 131,105 131,105 131,105 

    Energy Curtailment in 2035 (GWh) 

    Solar PV 0 0 0 335 

    Wind 0 0 0 126 

    Total 0 0 0 461 

* These numbers are installed nameplate capacity before derating. Therefore, they are different than the 

derated numbers presented in Table 3-6. 
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This result is explained by the higher amount of electricity per year that could be generated 

by one unit of wind power (e.g. due to the availability of the energy source, wind power 

could generate electricity 24 hours a day) relative to electricity generated per unit of PV 

solar power. Therefore, solar and wind annual generation combined causes the load net of 

renewable duration curve for most hours, including the peak hour, to be located below the 

curve created considering the annual electricity generated only by solar capacity. Scaling 

solar and wind capacity from the existing 1,474 MW (Base Case Scenario) to 17,693 MW 

(Scenario 3), increases the share of renewable generation capacity from 5% to 40% of the 

state’s total installed capacity in 2035. This expansion of renewable resources results in a 

significant increase of total capacity, but a comparatively small reduction of new peaking 

capacity requirements. That is, this net addition of 16,219 MW of solar and wind capacity 

offsets only 1,896 MW of peaking capacity, but Indiana’s power system continues to 

require additional conventional resources to be built.  

Table 4-4 shows the potential 5-minute ramping capability of Indiana’s non-solar and non-

wind installed generation capacity and the system’s maximum ramping up and down 

capacity levels required to be met in each scenario. Additionally, this table shows the 

annual average of the absolute 5-minute ramping capacity levels for all the scenarios. The 

identified 5-minute ramping capability focuses in baseload and peaking resources and does 

not consider the potential contribution of solar and wind generation units to ramping down 

capacity when they are running and have their energy curtailed. By 2035, if all the non-

solar and non-wind units identified in the base resource case were operational, turned on 

and not at maximum capacity, the maximum level of ramping service available would be 

8,387 MW per 5-minute interval. Under the base scenario, the system would use only a 

maximum of 282 MW and 435 MW of that ramping capacity to satisfy 5-minute ramping 

up and ramping down requirements, respectively. Increasing levels of solar and wind 

capacity cause the magnitude in megawatts of the greatest ramping events to grow, 

resulting in increasing pressure on the system’s ramping capability. Based on the results of 

the Scenario 3, Indiana’s power system would have enough 5-minute ramping capability 

(7,098 MW) to support the largest ramping up (4,989 MW) and down (5,642 MW) 

fluctuations resulting from a substantial expansion of renewable resources. Since the 

maximum ramping down event of Scenario 3 already represents close to 80% of the 
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ramping capacity available in the system, greater penetration levels of PV solar and/or wind 

power might impose a need for more dispatchable and more flexible generating units to 

have sufficient system flexibility in the future.  

The results of Table 4-4 also indicate that the average magnitude of every absolute 5-

minute ramping event in a year increases, as solar and wind capacity levels increase. 

However, this average is about 57 MW lower in the scenario with a combination of solar 

and wind generation capacity (Scenario 1) than in the scenario with solar generation 

capacity alone (Scenario 2). Therefore, on average, solar power has more 5-minute ramping 

capacity needs than wind does.  

Table 4-4 System 5-minute Maximum Ramping Capacity Availability and Requirements 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Ramping Capability in 2035 (MW) 8,387 7,420 7,582 7,098 

Greatest Ramping-up Need in 2035 (MW)  282 1,054 2,184 4,989 

Greatest Ramping-down Need in 2035 (MW) -435 -1,342 -2,458 -5,642 

Absolute Average Ramping in 2035 (MW) 38 87 144 310 

 

From the unit commitment/dispatch perspective, Table 4-5 shows the sum of the number 

of times every baseload and peaking generating unit is turned on, or committed, in a year. 

Furthermore, the table presents the sum of the cumulative 5-minute ramping capacity 

committed for each technology type unit over the year in each scenario. Cumulative 

ramping capacity for one unit is equivalent to the total number of times that units from a 

specific technology are committed in a year times the 5-minute ramping capacity of that 

type of unit. This cumulative ramping capacity could represent either ramping up or down 

capacity because the ramping up and down rates of this study are assumed to be the same 

for each technology. In the Base Case Scenario, the sum of the number of times baseload 

and peaking units are turned on represent about 87% and 13%, respectively, of the 2,055 

number of times that units would be committed and dispatched in 2035. In aggregate terms, 

on average, fewer numbers of units are turned on in the alternative scenarios than in the 

base case. However, in percentage terms, the contribution of the total number of times 

baseload (peaking) units are committed from the total number in a year increases (decreases) 

as renewable resources capacity increases. This contribution of baseload generating units 
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goes from 87% in the base case to about 91% in Scenarios 1 and 2 and to 96% in Scenario 

3. This is because, in Scenario 3 some large baseload units are used more for load following 

and turned on and off (cycled) more frequently than peaking units mainly during some days 

with low levels of demand and high levels of renewables generation. 

 

Although the sum of the number of times units are committed decreases in all the scenarios 

compared with the base case, the sum of cumulative ramping capacity committed in a year 

varies depending on the type of units that are turned on in each scenario. For example, the 

results show that even with a lower total number of units committed in Scenario 3, the 5-

minute cumulative ramping capacity contributed by those units in a year is approximately 

6% higher than in the Base Case Scenario. Additionally, the cumulative ramping capacity 

of the baseload and peaking units committed in a year in this scenario, are respectively 20% 

higher and 70% lower than the cumulative ramping capacity scheduled to operate in the 

base case. This is because larger capacity and cheaper to operate baseload power plants 

such as large coal or IGCC units are turned on and off more frequently over the year in the 

Scenario 3 than in the Base Case Scenario (See Figure 5-1 and Table 5-1 for an example).  

Table 4-5 Annual Number Times of Units and Ramping Capacity Committed in 2035   

 

Sum of the Number of Times Units are 

Turned on in a Year 

 Sum of Cumulative 5-minute Ramping 

Capacity of Units Turned on in a Year (MW) 

 

Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario  

3 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Baseload 1,791 1,647 1,561 1,750  75,577 75,443 65,079 90,661 

Peaking 264 159 168 79  14,024 8,628 9,467 4,244 

Total 2,055 1,805 1,729 1,829  89,601 84,071 74,546 94,905 

 

Furthermore, the start-up costs assigned to the baseload units do not account for the 

potential additional depreciation (e.g. shortened lifespans of the equipment) and O&M cost 

due to higher ramping variation and power plant cycling when following the load. In the 

base scenario, smaller size and more expensive to operate baseload and peaking units like 

NGCCs and NGCTs are turned on more times but providing smaller incremental levels of 

5-minute ramping capacity to the total sum of cumulative capacity committed in a year. 

Therefore, the addition of significant capacity levels of renewable resources (Scenario 3), 

on average, increases the number of times that larger coal and natural gas baseload units 
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are committed and operates them more like a load-following units. That is, a high level of 

solar and wind generation greatly offsets the number of times peaking units are turned on 

and off which consequently leaves the larger baseload unit with the necessity of meeting 

the ramping capacity requirements of the load net of renewables. Additionally, the results 

indicate that adding solar generation by itself (Scenario 2), would increase the cumulative 

ramping capacity committed in a year from peaking resources by 10% compared to the 

levels observed in the solar and wind generation case (Scenario 1). In Scenario 1, wind 

complements solar generation and contributes to the displacement of the number of times 

peaking generation units are tuned on mainly between the late afternoon to the early 

morning hours, when peaking units in the no new wind capacity case (Scenario 2) would 

otherwise be committed/dispatched.      

4.2.2 Energy Impacts Results  

For the Base Case Scenario, the results projects that the coal fleet would generate 75.5% 

of the total annual energy supplied to meet the 2035 Indiana’s system load (See Table 4-3 

and Figure 4-1). This resource is followed by nuclear (12.7%), IGCC (5%) and wind (3.7%) 

as the next most important contributors of the total power produced in the state. For this 

case, baseload, peaking and renewable resources would generate respectively 95.7%, 0.4% 

and 3.9% of the total annual electricity generation. Despite the dominant contribution of 

coal resources to the state’s total energy, these resources are not expected to be fully 

utilized in 2035. According to the results, the average capacity factor8 of all the installed 

coal power units is 72%, where larger percentage values represent more electricity 

generation per unit capacity. Meanwhile, for this Base Case Scenario, IGCC, hydro, landfill, 

and nuclear generation units have average capacity factor of 90% or greater. The capacity 

factors of solar and wind power installations are respectively 18% and 44%, which reflects 

the intermittent availability of these resources to generate electricity at their full capacity 

continuously over the year. 

                                                 
8 Capacity factor is the ratio of the average energy generated over a given period of time divided by the 

energy that could have been produced if the unit ran at 100% rated nameplate capacity continuously during 

the same period. An example for all the coal units is: 
98,928 𝐺𝑊ℎ

(8760 
ℎ𝑜𝑢𝑟𝑠

𝑦𝑒𝑎𝑟
) ×(15,700 𝐺𝑊)

= 72% 
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The amount of energy produced by conventional power generating units is lower in 

Scenarios 1-3. This happens because the economic benefit of generating the greatest 

possible amount of energy from resources with zero “fuel” cost. Relative to the Base Case 

Scenario, as penetration of renewable resources increases, the contribution of the energy 

supplied by baseload capacity decreases in Scenarios 1-3. This contribution goes from 96% 

in the base case to 84% in Scenario 1, 90% in Scenario 2 and 70% in Scenario 3. Meanwhile, 

the energy contribution of peaking resources barely changes across scenarios at less than 

1% of total generation.  

Because electricity generation from solar and wind resources depends on the intermittent 

availability of sunlight and wind, their capacity factors are lower than the capacity factor 

of the dispatchable resources. Furthermore, since additions of renewable capacity resources 

cannot equally offset the needs of conventional resources, the overall system average 

capacity factor drops from 47% in the Base Case to 43% in Scenario 1, 45% in Scenario 2 

and 36% in Scenario 3. In Scenario 1, among all the power generators, coal, IGCC and 

landfill units show the greatest capacity factor reductions with values declining more than 

9 percentage points for each technology, relative to the Base Case Scenario. In Scenario 2, 

the average reduction of the capacity factors of each of these power generating units is only 

about 5 percentage points. In this case, these generators, with low variable cost, are utilized 

more to compensate for lower generation per unit of renewables obtained for expanding 

only solar capacity rather than solar and wind capacity together. Since nuclear and hydro 

generators are the cheapest option to generate electricity within the system, these resources 

have respectively a 98% and 91% capacity factors and are fully utilized9 in all scenarios 

except Scenario 3.  

In Scenario 3, each of these resources not only shows a lower capacity factor, but also 

occasional energy generation curtailment, which was not observed in any of the other 

scenarios (See Table 4-3). However, the amount of solar and wind energy curtailed per 

year only represents 1.7% (335 GWh) and 0.6% (126 GWh) of their total potential annual 

output. Additionally, in order to accommodate all the electricity generated by solar and 

                                                 
9 The capacity factor for both of these units is 100% if forced outages are not considered. 
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wind projects, nuclear and hydro are less utilized and show slight reductions of their 

capacity factors. Landfill and IGCC resources have the greatest reduction in capacity 

factors with an average of 38 percentage points lower than the capacity factors in the base 

case, followed by reductions of 20 percentage points for coal units.  

 

Figure 4-1 Indiana’s Annual Electricity Generation Mix in 2035 

The principle impact of increasing renewable capacity levels is a reduction in the electricity 

generation coming from coal, as illustrated in Figure 4-1. As solar and wind capacities 

considerably increase their contribution to the system’s annual electricity generation, 

energy generated from coal falls from 75.5% in the Base Case to 65.3% in Scenario 1, 70.2% 

in Scenario 2 and 54% in Scenario 3. The energy contribution of the other non-solar and 

non-wind resources slightly declines across scenarios, but these reductions are not greater 

than approximately 2 percentage points relative to the base case. 
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4.2.3 Cost and Wholesale Electricity Rate Impact Results  

Annualized capital, variable, start-up and system total costs by technology generation type 

are detailed in Table 4-6 and Table 4-7. Since no additional baseload capacity is needed, 

there are no capital costs associated with this resource type. Relative to the Base Case 

Scenario, total annualized capital cost increases when more intermittent renewable energy 

sources are added to the system.  

Table 4-6 Annualized Capital and Variable Costs by Resource Type for Alternative 

Scenarios 

 Capital Costs (million 2016$)  Variable Costs (million  2016$) 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Coal - - - -  2,568.96 2,209.33 2,383.11 1,821.02 

IGCC - - - -  177.01 158.67 170.99 101.81 

Oil  - - - -  0.30 0.23 0.15 0.07 

NG 

Baseload 
- - - -  70.03 38.66 39.62 15.71 

NGCT - - - -  6.36 3.33 3.54 1.22 

Hydro - - - -  2.20 2.20 2.20 2.08 

Landfill - - - -  17.56 14.77 16.72 10.26 

Nuclear - - - -  133.71 133.71 133.71 128.62 

New 

Baseload 
0 0 0 0  0 0 0 0 

New 

Peaking 
112.20 42.56 54.17 19.35  26.33 4.00 4.13 0.49 

Solar PV 0 385.98 947.94 2,225.24  0 0 0 0 

Wind 0 526.43 0.00 647.53  0 0 0 0 

Total 112.20 954.97 1,002.11 2,892.12  3,002.46 2,564.90 2,754.17 2,081.29 

 

The annualized capital costs associated with new peaking resources in all the scenarios are 

lower relative to the Base Case Scenario. However, the capital cost for these resources is 

lower when solar capacity is added in combination with wind capacity (Scenario 1) rather 

than when solar capacity is added without additional wind (Scenario 2).  

A comparison between the total capacity cost of the no new solar capacity case and the 

cost of the case with only solar capacity additions (Scenario 2) would determine what the 

optimal annualized capital cost per MW of solar capacity should be. Dividing the 

difference between both costs by the level of solar capacity additions, results in an 



80 

 

annualized capital cost of $168,830 per MW in 2016 dollars. This cost is 6.1% lower than 

the estimated capital cost used in the analysis and represents the optimal average 

investment cost of adding one MW of solar capacity in Indiana’s electric power system.  

All the alternative scenarios have a total annualized capital cost substantially higher than 

the base case, because the capital costs of solar and wind technologies are still much higher 

than the costs of conventional generation resources. The higher capital costs of these 

renewable technologies are compensated by the zero variable cost incurred to operate them. 

Therefore, across scenarios, increasing solar and wind capacity results in reductions in 

aggregate variable cost when compared with the Base Case Scenario. 

Table 4-7 Annualized Start-up and System Total Costs by Resource Type for All the 

Scenarios  

 Start-up Costs (million  2016$)  Total Costs (million  2016$) 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

 Base 

Scenario 

Scenario 

1 

Scenario 

2 

Scenario 

3 

Coal 14.36 19.50 14.57 23.74  2,583.32 2,228.83 2,397.68 1,844.76 

IGCC 0.034 0.471 0.166 2.755  177.05 159.14 171.16 104.57 

Oil  0 0 0 0  0.30 0.23 0.15 0.07 

NG 

Baseload 
6.52 4.29 4.77 2.61  76.55 42.95 44.39 18.32 

NGCT 0.922 0.557 0.633 0.274  7.28 3.88 4.17 1.49 

Hydro 0 0 0 0  2.20 2.20 2.20 2.08 

Landfill 0 0 0 0  17.56 14.77 16.72 10.26 

Nuclear 0 0 0 0  133.71 133.71 133.71 128.62 

New 

Baseload 
0 0 0 0  0 0 0 0 

New 

Peaking 
0.201 0.131 0.127 0.066  138.74 46.70 58.43 19.91 

Solar PV 0 0 0 0  0 385.98 947.94 2,225.24 

Wind 0 0 0 0  0 526.43 0.00 647.53 

Total 22.038 24.946 20.269 29.441  3,136.70 3,544.82 3,776.55 5,002.85 

 

Relative to the base case, total variable cost is respectively 15% and 8% lower for Scenario 

1 and Scenario 2. This difference is mainly due to the greater contribution of coal, IGCC 

and landfill units to the total variable cost in the Scenario 2. These dispatchable units are 

utilized more to compensate for the generation losses resulting from not having new wind 

capacity expansion as part of the renewables portfolio mix.  
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On the other hand, aggregated variable cost in Scenario 3 is 31% lower than the base case 

(see Table 4-6). This is due to the significant additions of capacity with “zero” variable 

cost, which reduce the electricity generated from conventional units and therefore, their 

contribution to the total variable costs. In every scenario, the variable cost associated with 

coal generation resources contributes an average of 86% to the system total variable cost. 

The next big contributors to the system total variable cost are IGCC units, contributing an 

average of 6%, nuclear with 5% and natural gas baseload units with 2%. 

 

The total number of times that units are committed per year by generation type is used to 

estimate the annual start-up costs for each scenario (See Table 4-7). Since the start-up cost 

of oil, nuclear, hydro and landfill generation resources are treated as zero in this analysis, 

there is no total start-up costs reported in Table 4.7 for these units. The results show that 

due to the solar and wind capacity additions, the future annual start-up costs associated 

with baseload units would increase 16% in Scenario 1 and 39% in Scenario 3 and decrease 

about 7% in Scenario 2 relative to the base case scenario. Furthermore, the projected annual 

start-up costs resulting from the commitment of peaking units decreases by 39% in 

Scenario 1, 32% in Scenario 2 and 70% in Scenario 3 when compared with the same cost 

in the Base Case Scenario.  

 

Adding only new solar capacity generation (Scenario 2) in the system causes the annual 

aggregate start-up cost to drop about 8% relative to the cost in the base case. Conversely, 

the impact of adding new solar and wind capacity increases the aggregate start-up cost by 

13%. The main reason for this difference is that a higher number of medium and large coal 

and IGCC units are committed annually in Scenario 1 than in Scenario 2. For Scenario 3, 

the aggregate annual start-up cost is 34% higher than in the base case. This increase is 

mainly due to the significant number of times large coal and IGCC units that are committed 

and therefore dispatched in a year at these additional levels of solar and wind capacity. 

These types of baseload units, that are normally running or maintained in stand-by mode 

for most of the year, are utilized more like cycling units and are turned on and off relatively 

frequently.       
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The contributions of each cost category to the projected total annual cost for every scenario 

are shown in Figure 4-2. As shown in this figure, the reductions in total variable cost and 

changes in the start-up costs at any level of new renewable resources are not enough to 

offset the increases in capital cost. This makes the total system costs in all the alternative 

scenarios higher than in the base case. Consequently, under the scope of this study, the 

base case with no new solar or wind capacity would be optimal in terms of total future 

costs. However, adding solar and/or wind capacity may be more cost effective if other 

externalities like carbon costs and production incentives are considered in the analysis. 

 

Figure 4-2 Indiana Annualized Costs Mix across Alternative Scenarios in 203510 

At the current installed solar and wind capacity levels, variable costs would represent 95.7% 

of the total cost of meeting the capacity and energy requirements in 2035 (See Figure 4-2). 

In this case, the investment in new peaking capacity represents only 3.6% of the total 

system cost because this type of resources has lower capital cost than solar and wind 

                                                 
10 Note: Annualized capital costs for existing generators are sunk costs and not included in this analysis. 
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resources. The start-up cost in the Base Case Scenario contributes only 0.7% of the total 

cost, but represents the highest contribution of this type of costs across scenarios. 

The addition of 5,271 MW of renewable resources capacity, having solar capacity 

combined with wind capacity or individually, practically does not change, in percentage 

terms, the contribution of variable and capital costs to the total system cost identified in 

Scenarios 1 and 2. The capital, variable, and start-up costs represent respectively about 

72%, 27% and less than 1% of the total cost. Therefore, as the penetration of renewable 

resources increases, the share of variable cost in the total decreases. At substantial capacity 

levels of renewable resources (Scenario 3), the contribution of capital cost (58%) offsets 

the share of variable costs (42%) which are significantly reduced when compared with the 

base case and the other alternative scenarios.  

 

Figure 4-3 Indiana Annualized Costs Mix across Alternative Scenarios for Different 

Renewable Technology Capital Costs in 203511 

 

                                                 
11 Note: Annualized capital costs for existing generators are sunk costs and not included in this analysis. 
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Figure 4-3 shows the changes in total system costs across scenarios due to assumed future 

capital cost reductions of solar and wind technologies. Projected lower capital costs of 

these resources would considerably reduce the total system costs of the median and low 

technology cost scenarios relative to the current capital cost scenario. Across technology 

cost scenarios, as the penetration of renewable resources increases and capital cost of solar 

and wind decreases, the share of variable costs in the total increases. However, in the 

median technology cost scenario, the increase of this share of variable cost is still not 

sufficient to outweigh the increase in capital cost and therefore reduce the total system 

costs at any capacity levels of solar and wind resources. On the other hand, if solar and 

wind technologies reach even lower capital costs in the future (low technology cost 

scenario), the total system cost of Scenario 1 would decrease by 1.7% relative to the Base 

Case Scenario. This cost of Scenario 1, in the low technology cost scenario, is about 13% 

lower than the total cost of the same scenario in the current technology cost case. However, 

even considerably lower capital costs of solar and wind technologies would not reduce the 

total system costs for Scenario 2 and Scenario 3 relative to the Base Case Scenario.   

 

The numbers available in this study allow for the estimation of an electricity rate, that 

approximates the wholesale rate, by dividing the total system cost values (Table 4-7) by 

the projected 2035 energy consumption (131,105 GWh). The various solar and wind 

capacity additions would increase future wholesale rates by approximately 13% in Scenario 

1, 20% in Scenario 2 and 60% in Scenario 3 (See Table 4-8). 

Table 4-8 Impacts of Alternative Renewables Capacity Additions on 2035 Wholesale Rates  

 
Base 

Scenario 
Scenario 

1 
Scenario 

2 
Scenario 

3 

Wholesale Electricity Rate (2016 cents/kWh) 2.39 2.70 2.88 3.82 

% Rate Change from Base Case - 13.0% 20.4% 59.5% 
 

4.3 Capacity Value of Solar  

This section presents the additional resource needs identified by scaling solar and wind 

capacities and the resulting value of solar capacity in terms of peaking resources. Table 4.9 

details the future peaking resource requirements identified by running the capacity 
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additions model and the value of solar capacity calculated for the different solar and wind 

capacities cases. The planning results show that, relative to 2015 installed generation 

capacity levels, no new baseload capacity needs to be built. The need for new peaking 

resources also decreases as solar and wind capacities increase. Since the model identified 

no new additions of baseload resources for all these cases, the zero values for this 

technology are not displayed in Table 4-9 or Figure 4-4. 

 

The identified new peaking capacity requirements in 2035 fall as the amount of solar 

capacity increases in the system. On average, if 2,000 MW of installed wind capacity is 

complemented with 1,000 MW of solar capacity, the requirements of new peaking capacity 

in the state’s power system would fall by about 718 MW relative to the case with 4,000 

MW of solar (See Table 4.9). At the 3,000 MW of renewables capacity level (2,000 MW 

of wind and 1,000 MW of solar), for each proportionally mixed 1 MW of renewables added 

to the system, the system requirements for peaking capacity are 473 kW. Differently, if 

4,000 MW of solar capacity is added to the system accompanied with the same 2,000 MW 

of wind capacity, this would reduce the total peaking resources requirements to 117 kW 

for each 1 MW of renewables added to the system. 

 

Figure 4-4 illustrates the decreasing variation in the levels of peaking capacity as additional 

solar and wind generation is added to Indiana’s power system. As displayed in the figure, 

the peaking capacity requirements for all the wind capacity cases show a downward 

trajectory with steeper rate of change between 200 MW and 2,800 MW than the rate of 

change observed between the 3,000 MW and 4,000 MW of installed solar capacity. For 

this first section of the trajectory of the case with 0 MW of wind capacity, every increase 

of 200 MW levels of solar generation causes an average reduction of 52 MW from the 

identified total peaking resource requirements.  

        

For the same 0 MW wind case, beyond 3,000 MW of installed solar capacity, this average 

reduction (19 MW) from total new peaking resource requirements, starts to slow down (i.e. 

the slope is flatter) as solar generation increases. For the 3,000-4,000 MW range of installed 

solar capacity, solar capacity additions to the system highly reduce the load net of solar in 
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the middle part of the day and shifts the time of greatest electricity need to even later 

evening hours. That is, the need for conventional resources increases. Therefore, the 

displacement rate of new peaking resource requirements is lower relative to the observed 

rate between the 200 MW to 2,800 MW range of installed solar. 

 

Figure 4-4 Change in Peaking Capacity Requirements Due to Solar and Wind Additions 

Table 4-9 also shows the values of solar capacity in percentage terms for various wind and 

solar capacity levels considered for this section of the study. These percent values for each 

of the wind capacity cases, represent the absolute incremental change of peaking resources 

requirements divided by the incremental addition from the giving level of solar capacity to 

200 more megawatts. Because the load pattern changes with every addition of wind 

generation capacity, the identified solar capacity values correspond, specifically, to each 

of the wind capacity cases and cannot be compared across cases. Increasing levels of solar 

generation in the power system of the state reduces the capacity value of this resource. 

These values are confirmed to be highly sensitive to increasing levels of solar capacity. As 
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solar capacity is added to the system, the timing of the peak load hour begins to shift to a 

later time in the day when solar generation begins to significantly drop, therefore 

decreasing its contribution to reliably meeting the peak demand.  

 

In Indiana’s power system, the addition of 1,000 MW to 2,000 MW of wind capacity in 

combination with up to 3,400 MW of installed solar capacity levels, in most cases, 

increases the average value of solar capacity in comparison with the values resulting of 

only adding solar capacity with no wind.  

Table 4-9 Peaking Capacity Requirements and Solar Capacity Values for Alternative Solar 

and Wind Capacity Levels 

  Peaking Resources (MW)*  Solar Capacity Value (%)** 

Solar 

Capacity 

in 2035 

 Wind Capacity in 2035  Wind Capacity in 2035 

 0 

MW 

500 

MW 

1,000 

MW 

1,282 

MW 

(Base 

Case) 

2,000 

MW 

 0 

MW 

500 

MW 

1,000 

MW 

1,282 

MW 

(Base 

Case) 

2,000 

MW 

193 MW 

(Base Case) 

 
2,140 2,006 1,925 1,885 1,796 

 
- - - - - 

200  2,136 2,002 1,920 1,880 1,791  58.3 60.6 65.7 65.7 67.3 

400  2,051 1,885 1,804 1,763 1,675  42.1 58.3 58.0 58.6 58.3 

600  1,982 1,796 1,715 1,673 1,583  34.7 44.5 44.6 44.9 46.0 

800  1,915 1,719 1,642 1,600 1,495  33.6 38.6 36.7 36.7 44.0 

1,000  1,851 1,651 1,569 1,527 1,420  32.1 34.2 36.7 36.7 37.4 

1,200  1,790 1,591 1,495 1,453 1,347  30.1 30.1 36.7 36.7 36.7 

1,400  1,743 1,543 1,422 1,380 1,273  23.9 23.9 36.7 36.7 36.7 

1,600  1,696 1,497 1,358 1,308 1,200  23.4 22.7 32.2 36.1 36.7 

1,800  1,649 1,452 1,294 1,244 1,127  23.4 22.7 32.0 32.0 36.7 

2,000  1,602 1,406 1,229 1,180 1,057  23.4 22.7 32.0 32.0 34.6 

2,200  1,555 1,361 1,182 1,121 1,001  23.4 22.7 23.8 29.2 28.2 

2,400  1,509 1,315 1,136 1,065 945  23.4 22.7 22.7 28.0 28.0 

2,600  1,462 1,270 1,091 1,009 895  23.4 22.7 22.7 28.0 25.3 

2,800  1,416 1,228 1,045 957 847  23.1 20.8 22.7 26.1 23.6 

3,000  1,387 1,200 1,013 913 807  14.2 14.2 16.1 22.1 20.1 

3,200  1,376 1,182 997 893 783  5.8 9.0 7.9 9.9 12.1 

3,400  1,364 1,166 981 879 759  5.7 7.9 7.9 6.9 12.1 

3,600  1,353 1,150 970 874 734  5.7 7.9 5.9 2.7 12.1 

3,800  1,343 1,137 964 869 718  4.9 6.5 2.7 2.7 8.2 

4,000  1,337 1,132 959 863 702  3.1 2.7 2.7 2.7 7.9 

   Average of Total:  22.9 24.8 27.3 28.7 30.6 

   Average 200 MW - 2,800 MW:  29.9 32.0 35.9 37.7 38.5 

   Average 3,000 MW - 4,000 MW:  6.6 8.0 7.2 7.8 12.1 

* Peaking resources come from the capacity expansion model 

** Solar capacity value represents the capacity contribution of solar power to meeting system peak demand 

in percentage terms of capacity of peaking resources. For example, the percentage value at the 1,000 MW 

solar capacity step and 2,000 MW of wind capacity level is calculated as follows: (
1,495 𝑀𝑊−1,420 𝑀𝑊

200 𝑀𝑊 𝑜𝑓 𝑆𝑜𝑙𝑎𝑟
)  ×

100 = 37.4%.  
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Across all the renewables capacity levels studied in this section, the 2,000 MW of wind 

and 200 MW of solar capacities case has the highest average capacity value of solar with 

67.3% of the solar AC rated capacity. Therefore, a 67.3% capacity value means that for 

every 1 MWac of additional solar capacity installed at this renewables capacity level, there 

is a 0.67 MW reduction in the levels of peaking capacity additions. For the 2,000 MW of 

wind capacity level, the average capacity value of solar is about 30.6% of the AC rated 

capacity for the solar capacity steps, ranging from 200 MW to 4,000 MW. However, at 

higher ranges of solar capacity levels, the average capacity values drop going from about 

38.5% to 12.1% when comparing the values of the 200 – 2,800 MW and the 3,000 – 4,000 

MW ranges, respectively. A similar pattern is observed in all the other wind capacity cases, 

where the average capacity value of solar generally falls as installed capacity of this 

resource increases. However, there are particular cases where the percentage values stay 

the same as the solar capacity additions increase by 200 MW. This is because, for these 

cases, each of the consecutive incremental levels of solar generation contributes by the 

same magnitude to the creation of each of the new peaks of the load net of solar curve. 

Since each of these new peaks are contrasted with the same system peak load, then the 

levels of additional peaking resources decrease by the same proportion than the solar 

generation incremental levels.  
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CHAPTER 5. DISCUSSION AND CONCLUSIONS 

This chapter is composed by four sections and aims to summarize the questions posed 

throughout this investigation. While the first section covers the discussion of the results, 

the second one presents the conclusions of the different analyses developed in this research 

study. The third and fourth sections present respectively the caveats identified in the 

proposed methodology and the potential future work to improve or complement the present 

findings.  

5.1 Discussion 

5.1.1 Discussion of Optimal PV Solar System Configuration Results  

The results of the optimization of PV solar configuration provide the optimal combination 

of azimuth and tilt angles that maximizes in turn the annual energy generation and the 

economic value of that energy generated by various PV solar panel arrays in eight zones 

across Indiana. These results confirm that the solar radiation captured to generate electricity 

varies depending on the orientation and tilt angles of the panels. Therefore, the differences 

between the angles identified in the optimal cases and the ones in the Indiana’s typical 

system configuration are small but noticeable especially in some geographical zones.  

Earlier studies applied a rule-of-thumb approach of deciding an optimal tilt angle based on 

the local latitude of the analyzed solar projects. However, in this study, the identified 

optimal tilt angles are lower than the local latitude of every solar project in all the regions. 

Since Indiana is located within a latitude range of about 37.9˚ and 41.7˚, at these potential 

tilt angles, there would be an increase in materials and labor costs for installing taller poles 

or racks mounts and drilling holes deep enough for them. Furthermore, another factor 

considered by PV solar designers is that PV panels with those potential tilt angles would 

need to withstand enormous stress from heavier wind loads. For that reason, the upper 

bounds imposed in this study reflect these limitations, and are equal to the resulting optimal 

tilt angles of 0˚, 10˚ and 25˚ for single axis tracking, fixed roof top mount and fixed open 

rack arrays, respectively. This means that the tilt angle for fixed open rack arrays is on 
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average 14˚ lower than the state’s latitude, and consequently, is significantly lower than 

the optimal tilt angles estimated in other studies (Blumsack et al., 2010; Rhodes et al., 

2014).   

The results show that all the locations and array types in Indiana would have optimal 

azimuth angles within the 177˚ and 190.5˚ range. This indicates that the traditional design 

criteria of orienting the solar module directly south (180˚ azimuth) might be an acceptable 

approximation to obtain annual energy and revenue values close to the amounts obtained 

in an optimal setup, independently of the location and array type of the solar project. This 

band of optimal azimuth angles is consistent with the one estimated by Rhodes et al. (2014) 

for maximizing energy value. However, the results suggest that the best practice might be 

to orient the panels in some specific zones of the state, especially Zone 2, slightly more 

towards the east if the objective is to maximize annual generation. This result might 

indicate that the annual average degree of cloudiness in those regions is slightly higher in 

the late afternoon than in the morning hours.   

Furthermore, the findings of this analysis show that there might be a small advantage to 

use different azimuth angles depending on the type of array installed. On average, the 

annual energy generation could somewhat increase if solar project developers configure 

the installation of  fixed open rack, fixed roof mount, and single axis tracking arrays using 

an azimuth angle of 179.1˚, 178˚ and 179.6˚, respectively.  

On the other hand, if the objective is to maximize the economic value of the energy 

generated per year, the panels must be configured slightly more towards the west. From 

this economic perspective, if wholesale electricity prices maintain the same hourly pattern 

in the long term, electric utilities could benefit from having PV solar installations with an 

average azimuth angle of 185.6˚for fixed open rack, 184˚ for fixed roof mount and 181.1˚ 

for single axis tracking arrays. These angles are somewhat lower than the optimal azimuth 

angle range (185˚- 200˚) found by Hummon et al. (2013) and Rhodes et al. (2014), but their 

optimal angles were determined in combination with tilt angles higher than 25˚. 

Nevertheless, the identified average gain of 0.25% in revenues resulting from shifting the 
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typical configuration of the solar panels to a maximum economic value setup is similar to 

the results obtained by Hummon et al. (2013).  

These findings confirm that the increases in annual electricity generated or revenue are 

minor compared to the typical configuration in Indiana. However, the results show that in 

certain zones of the state, orienting the panels more towards the west, based on the 

wholesale electricity prices, slightly increases the revenues due to the higher observed 

prices during the afternoon hours.  

It is noteworthy that, since the optimal placement of the solar panels and their 

corresponding energy and revenues numbers were estimated using a combination of 

azimuth and constrained tilt angles, the use of higher tilt angles could change the current 

results. However, the restrictions that limit the use of higher tilt angle provide a closer 

representation of reality by reflecting a design that considers and balances among other 

things the number of panels per area, wind loading on solar panels, and installation costs 

of utility-scale solar PV projects.    

5.1.2 Discussion of the Base Case and Alternative Scenarios Results 

The findings of the capacity expansion model show that in a cleaner portfolio of power 

generation, consisting of higher levels of solar and wind capacity resources, there would 

still be need of adding traditional forms of generation like peaking generation units. 

However, the total need for additional conventional resources declines as more renewables 

are added to the generation mix, which is consistent with the results obtained in a previous 

analysis for Indiana (Davis et al., 2013).  

Meanwhile, the results from the back-of-the-envelope procedure identify that in all the 

installed dispatchable generators are sufficient to meet even significant 5-minute ramping 

events that are on average amplified by new solar and wind capacity into the electric system. 

Furthermore, the results from the commitment model do not show evidence that the number 

of power units committed in the alternative scenarios would be higher than the Base Case 

Scenario, due to the new ramping conditions. Therefore, the additional requirements of 

non-solar and non-wind resources are added mainly to complement solar or wind resources 
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at times, when their generation is not at full capacity, and to ensure that the summer peak 

load is met. 

In this study, the commitment and dispatch model allows us to identify the optimal annual 

electricity composition of power output produced from different generators and how it 

shifts across scenarios to meet the same 2035 annual load. From the minimum cost dispatch 

perspective, at high levels of solar and wind resource capacity, renewable generation 

mainly substitutes the power output supplied by baseload generation resources only after 

the generation coming from peaking resources have already been displaced. From the 

commitment perspective, the results show consistency in providing higher annual capacity 

factors for groups of larger thermal generating units (e.g. coal and IGCC units) given the 

cheaper operating costs that motivate the use of these units for the primary purpose of  

meeting baseload demand.12  

The calculated capacity factor values provide a clearer picture of how the groups of 

generators are utilized in a year and how the generation needs from available resources 

change at different solar and wind capacity levels. As originally expected, the results 

confirm that the generators that supply electricity at lower variable cost are the ones with 

the highest capacity factors and utilization levels in a year. For example, hydro and nuclear 

generators have respectively 91% and 98% capacity factors in all the scenarios except for 

Scenario 3, where their generation slightly declines in favor of a cheaper electricity 

generated by the abundant solar and wind capacities. Furthermore, in Scenario 3, there are 

cases where the energy requirements in the load net of renewables is so low that it falls 

below the sum of nuclear and hydro capacity explaining the reduction in energy needs and 

annual variable costs  from these resources.   

However, higher annual capacity factors do not necessarily mean that the units are 

continuously generating electricity day after day without being turned off or utilized less 

during the year. For example, there are days when low levels of electricity demand coincide 

with high levels of power generation from renewables (Scenario 3), especially solar 

                                                 
12 Baseload demand is the minimum level of electricity demand required over a period of time, for example 

24 hours. 
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generation during the middle part of the day, which significantly reduce the minimum daily 

load net of renewables that is required to be met by dispatchable resources. One of these 

days is Day 105, or April 15, from the 2011 load profile of Scenario 3, which has the 

highest amount of solar energy curtailment and relatively low levels of load compared with 

other days of that year. For illustration purposes, Figure 5-1 shows the 2035 load, load net 

of renewables, and the identified generation mix from various types of generation 

technologies for Day 105 and for two different scenarios. The top and bottom parts of the 

figure illustrate the results for the Base Case Scenario and Scenario 3, respectively.  

During the midday hours, Figure 5-1 and the results of the model show that it is more cost-

effective in Scenario 3 to reduce generation from large thermal units or even turn them off 

(despite their high minimum up/down times and substantial start-up costs) to give way to 

the “free” generation from solar and wind resources. Table 5-1 lists the number of times 

generating units of various types of technology are turned on and off on Day 105 in the 

Base Case Scenario and Scenario 3. For Scenario 3, the table indicates that large coal and 

IGCC units, which are cheaper to dispatch than other generation resources, would be 

frequently turned off and on respectively during the morning and afternoon hours, even 

though they have higher start-up costs. This explains why the total start-up cost in Scenario 

3 is higher than the Base Case Scenario, even though the identified total number of units 

turned on annually (see Table 4-5) is lower than in the case without new solar and wind 

generation. However, in aggregate, this type of cost makes a very small contribution to the 

total cost of the system. 
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Figure 5-1 2035 Load and Generation Mix (MW) for Day 105 and Two Scenarios.    

The results of the models show that the total variable operational cost of the system across 

scenarios substantially declines, driven by the zero variable cost added to the system by 

the additional solar and wind capacity. On the other hand, the decline in the incremental 

capital cost for installing less new peaking capacity resources does not offset the increase 

in the total capital costs for investing in renewable generation capacity as cleaner but more 

expensive forms of generation.  
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Table 5-1 Number of Times Generating Units are Turned On and Off on Day 105 in the 

Base Case Scenario and Scenario 3. 

Scenario Technology Number of Additional 

Units Turned On 

Number of Units Turned 

Off 

Base Case    

 Medium coal 2 2 

Scenario 3    

 Medium coal 0 1 

 Large coal 5 5 

 IGCC 1 1 

 

Except for the Scenario 1 in the low technology cost scenario, the decline in total variable 

cost across scenarios is not sufficient to offset the increase in capital costs and therefore 

total system costs. These findings indicate that in most of the scenarios these increments in 

total cost would directly translate into higher wholesale and retail electricity rates in 

Indiana. However, an approximately 50% reduction in each of the technology costs of solar 

and wind resources (from current to low technology cost scenarios) would allow 

incorporation of expanded renewable generation resources, at the capacity levels of 

Scenario 1, without increasing the total system costs or electricity prices in the state.  

 

5.1.3 Discussion of the Solar Capacity Value Results 

The results of this analysis confirm that only new peaking capacity would be required in 

Indiana’s electric system to complement the additions of renewable generation capacity. 

The amount of new peaking capacity required decreases as solar and wind capacity levels 

increase. This is because generation by either wind or solar, while not perfectly correlated 

with Indiana load nor available at the same time at full capacity during the annual peak 

demand, still offsets some of the peaking requirements. Furthermore, findings of this 

analysis indicate that, for all the wind installed capacity levels analyzed, additions of solar 

power capacity in most of the cases reduce the capacity value of this resource in Indiana.  

The results show a range of PV capacity values that vary widely depending on the 

combination of solar and wind capacity levels. These calculated capacity values are 
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between 2.7% and 67.3% of the corresponding solar nameplate capacity, and represent the 

average capacity values of solar power in Indiana considering all types of PV solar arrays. 

Recall that, for the 200 MW solar and 2,000 MW wind capacity levels, a 67.3% capacity 

value means that 1 MWac of solar capacity can provide an equivalent level of reliability as 

a 0.67 MW advanced natural gas-fired combustion turbine. This range of values for solar 

capacity is somewhat similar to the range found by Duignan et al. (2012) in their review of 

several solar capacity studies. However, it would be difficult to compare and find 

consistency with the findings presented in that or other previous studies (Madaeni et al., 

2013; GE Energy, 2010) because estimated capacity values for solar vary a lot depending 

on the methodology and the key assumptions considered. For example, the evaluation 

technique, the coincidence of solar generation with the specific system peak demand and 

daily load patterns, and other intrinsic characteristics of the solar plants such as size, 

location, configuration, array type, etc., directly affect the capacity value results.  

Additionally, the calculated aggregated solar capacity values differ based on the solar 

penetration levels. For the 2,400 MW of solar and 1,282 MW of wind aggregated capacity 

levels, the average solar capacity value is about 28%. These solar and wind capacity levels 

would respectively represent penetration levels of 2.9% and 3.7% of the 2035 electricity 

generation for the state. However, if the penetration level of solar power increases to 4.8% 

of the electricity generation in Indiana (4,000 MW total solar nameplate capacity), the 

average solar capacity value for the state falls considerably to 2.7%.   

5.2 Conclusions 

The increasing importance of solar power as one of the preferred choices among renewable 

resources motivates the need to identify the benefits and challenges of integrating this 

intermittent form of generation into the Indiana’s power supply system. The intermittent 

and unpredictable aspects of this resource pose operational and economic challenges that 

need to be understood for improving the electric resource planning process and utilization 

of renewable energy. The different analyses included in this study represent another 

relevant piece of information that contributes to a better understanding of the impacts and 

potential implications of integrating solar and wind power in an electricity supply system.   
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5.2.1 Conclusions of Using Various PV Solar System Configurations in Indiana  

This part of the analysis determines the optimal combination of azimuth and tilt angles that 

maximizes the annual energy generation and the economic value of that energy generated 

by various PV solar panel arrays in eight zones across Indiana. The resulting optimal 

orientation angles presented in this research are consistent with the findings of other studies 

regarding the range of azimuth angles that maximizes annual energy, although they are 

somewhat lower than the range of angles that maximize annual revenue. However, the 

magnitudes of the impacts on revenues from using a maximum economic value 

configuration instead of a typical configuration is similar to the impact found in previous 

studies. Nevertheless, the results of this study demonstrate that there are only minor 

economic and energy generation benefits from the reconfiguration of solar PV installations 

across the state.  

Having optimal azimuth angles slightly oriented more towards the west than the typical 

configuration to maximize the annual revenue, results because the timing of solar 

generation in Indiana exhibits a positive correlation with wholesale electricity prices. 

However, at the current installed solar capacity levels, the maximum additional revenue 

per year that could be obtained by aligning the solar energy production of all solar projects 

of the state with the wholesale market electricity prices is only about $36,240. This 

represents about 0.25% of the total economic value of the energy generated from solar 

power projects across Indiana. Meanwhile, the maximum additional annual electricity (896 

MWh) resulting from a hypothetical reconfiguration of all of the state’s solar installations 

represents only 0.30% of the solar output generated from the same existing installations 

with typical configurations. This additional annual electricity generated from solar is 

observed to occur more during the morning and midday hours, and therefore make only a 

minor contribution on average to reducing any afternoon daily peak load in the year. 

Different from other studies, this analysis contributes to the literature by considering three 

specific array types and various locations using Indiana as a case study. In that sense, fixed 

open rack installations have the potential to return higher annual energy and revenue than 

either fixed rooftop and single axis tracking arrays. Also, although in all the zones of the 
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state the optimal placement of the solar installations increases the energy and revenue 

generated in a year, the southern and northwestern zones of the state show the highest 

impacts from that reconfiguration. 

Therefore, in some zones across the state, solar project developers would be motivated to 

use one optimal configuration over the other depending on the system tariff agreed with 

the utilities under a power purchase agreement. If this agreement considers a tariff per 

kilowatt-hour produced that varies accordingly with the hourly wholesale electricity 

market prices, then developers would definitely prefer a slightly west-facing configuration 

strategy that more closely aligns higher solar generation levels with higher electricity prices. 

On the other hand, an annual fixed tariff would incentivize the developer to install solar 

panels facing slightly more towards the east to produce the maximum amount of electricity 

annually, which also translates into maximum annual revenue.  

However, in a regulated market environment like Indiana, the electric utilities that act as 

system planners and operators, reach an agreement with the state’s regulatory commission 

to receive a fixed levelized rate per kilowatt-hour that guarantees they can recover 

operational expenses and a rate of return on equity. In this scenario, the utilities might 

prioritize a solar installation placement that maximizes annual electricity over annual 

revenue because of the potential planning advantages and operational flexibility that the 

excess energy generated would give to the overall system. For example, from the system 

planning perspective, if an annual maximum energy configuration of solar installations is 

accompanied with energy storage technologies, this potential additional annual energy 

available can be stored during off-peak hours (lower demand) and used during on-peak 

hours (higher demand). The success of that strategy would depend on the efficiency of 

storage and the differences in energy value across time within the day. These 

complementary measures can have a greater impact in reducing the annual system peak 

load and therefore the need for additional resource capacity. Then, the application of 

measures as the use of a competitive electricity market price in combination with west-

facing solar installations or the use of east-facing solar panels for exploiting operational 

and planning advantages, might bring reductions to the costs and final electricity rates paid 

by Indiana customers.  
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These results show that electric utilities and project developers could benefit in energy or 

economic terms from an optimal placement of solar installations, which is viable 

particularly for fixed open racks, without incurring significant additional costs. 

Furthermore, incentives could be provided to encourage the use of optimal configurations 

in future solar project investments and prioritize the installation of utility-scale fixed open 

racks at specific locations across the state. While the northwestern (Zone 1) and southern 

(Zone 8) regions of Indiana might be better locations to maximize the impact of applying 

an optimal configuration, other factors must be considered, such as the distance from the 

electricity demand centers and the need for additional investments in electric transmission 

infrastructure. Furthermore, the agglomeration of solar installations in only one specific 

zone would reduce their geographic diversity and increase the magnitude of the intermittent 

changes in the aggregated solar power generation.    

5.2.2 Conclusions Regarding the Impacts of Integrating PV Solar into a Power 

System in Indiana 

This proposed analysis explores the effects of additional solar and wind power investments 

on the future requirements for conventional generation capacity, the amount of energy 

supplied by various types of generation technologies and the costs of Indiana’s electric 

supply system. From this study perspective and holding everything else constant, the 

results of this analysis indicate that the existing capacity generating fleet of the state in 

combination with only few additional megawatts of new conventional peaking resources 

is sufficient to support substantial additions of utility-scale PV solar and wind generation 

capacity resources in the system.  

The comparison of the results among scenarios sheds some light on the possible economic, 

technical, and policy implications of expanding the share of renewables within the 

generation portfolio of the state. For example, the fact that there is solar and wind 

generation curtailment and a reduction in generation of the cheapest dispatched generating 

resources  – nuclear and hydro – in Scenario 3 relative to the other scenarios, implies that 

utilities and ultimately consumers would be paying an additional hidden cost for dumping 

unused electricity or having units operating inefficiently within the system.  
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The comparison of the total costs of Scenario 1 and Scenario 2 provides support to the idea 

that it would be cheaper in the long-term to invest in a combination of solar and wind 

generation resources than in solar generation resources alone. Therefore, policy makers 

could promote tax incentives or pricing mechanisms (e.g. feed-in tariff rates) for 

prioritizing a more balanced investment making sure the portfolio of renewable energy 

technologies include solar and wind resources in complementary proportions. Furthermore, 

if there is a substantial decline in the technology costs of solar and wind resources, it would 

be cheaper in the future to invest in renewables resources up to the capacity additions levels 

of Scenario 1 than only in peaking generation resources.   

Results show that in all the scenarios except for Scenario 1 in the low technology cost case, 

the reductions in variable costs are not sufficient to outweigh the increases in capital costs 

regardless of the levels of solar and wind capacity additions. Therefore, in those scenarios, 

any level of additional capacity from those resources will contribute to an increase in 

wholesale rates. However, the cost-effectiveness of solar and wind power investments 

should consider, among other things, the benefits related to a less polluted environment, a 

risk reduction from having a more diversified generation portfolio, or better human health 

from having low-emission forms of generation within the power supply system. All these 

benefits may be taken into account by policy makers to determine if it would be acceptable 

to pay these additional costs in order to promote solar and wind power development.  

From a technical perspective, the results indicate that the existing blend of conventional 

generation resources in Indiana would have sufficient operational flexibility to meet any 

new 5-minute ramping events from the integration of solar and wind capacity penetration 

levels of up to 30% of total electricity generation. However, additional capacity of flexible 

generation resources or energy storage technologies may be required to address system 

operational challenges such as deviations from nominal frequency or power and voltage 

fluctuations that could occur as a consequence of substantial integration of renewable 

generation resources. 

Since Indiana still heavily relies on coal to generate electricity, the state might face the 

retirement or the need to convert some of the coal generating units to natural gas in order 
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to comply with potential future environmental regulations that seek the reduction of 

greenhouse gas (GHG) emissions. Therefore, this study contributes to a better 

understanding of the implications of solar and wind power within the state’s power supply 

system and provides another decision-making tool from a planning perspective for 

policymakers, utility companies and project developers. 

5.2.3 Conclusions of the Solar Capacity Value Calculation Methodology 

This analysis focuses on determining the capacity contributions of PV solar power and in 

alternative combinations with wind power to Indiana’s electricity supply system at various 

penetration levels of these resources. The proposed capacity expansion model is used to 

estimate the equivalent amount of 1 MW of solar power in terms of the capacity of a 

conventional plant from a deterministic system peak load reliability perspective. Although 

most of the traditional metrics use a full adequacy reliability-based approach to assess 

renewables capacity values, the range of values obtained with this simplified method are 

in line with the ones found in other studies.  

The results for this section show that no new baseload resource capacity is necessary even 

at substantial solar and wind capacity levels. This is because Indiana’s installed generating 

fleet predominately consists of baseload generation resources (89%), and the new 

renewable resources of the system have a greater impact on reducing the minimum load 

that is usually supplied by baseload units than by peaking units. This is because, like 

baseload units, renewable resources have low variable operating costs. Therefore, 

renewable resources are closer substitutes to baseload than peaking generating resources.  

The model also indicates that the need for additional peaking resources falls as the 

additions of new solar and wind capacity levels increase. However, the impacts of reducing 

the requirement of additional peaking capacity in Indiana’s electricity supply system are 

higher at lower levels of renewable capacity additions. Therefore, the initial benefits of 

higher PV solar capacity values decline as more solar installations are built in the state; this 

reduction in capacity value is particularly evident at solar capacity levels higher than 3,000 

MW. This reduction of the capacity value of solar is due to the lower contribution that each 
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additional unit of solar capacity has in reducing the system peak demand. As solar 

generation increases and closely coincides with the occurrence of the system peak load, 

there is a shift of the peak load net of renewable generation time to later afternoon hours, 

when solar installations begin to reduce their production.  

These findings could create incentives for implementing demand side management 

programs or build storage facilities to modify the daily load pattern and peak time starting 

at specific solar capacity levels, in order to maintain or increase the capacity credit of these 

resources. Furthermore, a feed-in tariff project (policy that requires electric utilities to pay 

solar projects developers a price high enough to generate a reasonable return on their initial 

investment) could be arranged to incorporate up to a given number of megawatts of solar 

capacity into the generation portfolio that would bring a desired contribution level of solar 

power to the peak load. System planners would identify the appropriate contribution level 

that allows them to have a more diversified portfolio and maintain system reliability at 

affordable electricity rates for customers.      

Despite diminishing marginal solar capacity values, a large amount of solar and wind 

capacity can be accommodated in the power supply system while still continuing to reduce 

the level of additional peaking capacity requirements and therefore the system’s carbon 

footprint. The results presented also improve our understanding of the potential capacity 

tradeoff between peaking, solar and wind resources at different future levels of solar and 

wind capacity. These results provide a guide on how to use low-emissions generation 

resources and plan for reaching a long-term equilibrium of the system’s capacity mix. 

Furthermore, the results contribute to our understanding of the magnitude of the 

responsiveness of Indiana’s electric power system to different sizes of solar and wind 

capacity levels, and the potential to complement renewable generation capacity with 

alternative supply and demand resources.  

5.3 Caveats 

The following section discusses some of the factors that are not considered in the present 

study and may affect the current results. This discussion also reviews some of the 
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limitations encountered during the research process that could be further analyzed or 

improved in future studies.   

5.3.1 Factors Affecting the LDC, Capacity Additions and Costs  

The time horizon assumed in this study implies that the current technology of solar and 

wind resources and their capital costs would be unchanged for many years. However, more 

efficient and cheaper solar panels and wind turbines are highly likely to be available in the 

short- and medium-term due to the rapid pace of innovation and development of new 

technologies. These changes in technology may significantly increase the solar and wind 

generation produced per unit of land with potential lower installation and capital costs per 

watt. The lowering of capital cost could make solar and wind more cost-effective and 

economically attractive compared to conventional generation resources.  Ultimately, 

higher additions of new solar and wind capacity would affect the current generation 

resource mix and the total capital cost of the system. Additionally, the potential future 

retirement of coal generation units in the state due to age or to comply with environmental 

regulations could reduce the installed baseload capacity levels and improve the value of 

the contribution of solar and wind to the generation portfolio. On the other hand, a 

substantial retirement of baseload units would modify the level of new baseload and 

peaking resources requirements identified by running the capacity planning model and 

therefore impact the resulting capital and variable costs of the system. Moreover, the 

integration of renewable resources in the system has the potential to simultaneously 

provide some types of ancillary services to the grid and would require other types of 

services from the grid. This study ignores the respectively impact of solar and wind 

generation resources on the ancillary services markets. The consideration of these services 

could cause a shift in the optimal utilization of the conventional generating units needed to 

provide ancillary services and directly affect the identified system variable costs. In 

addition, it can be expected that using baseload generating units to follow load may 

decrease their efficiency, raise their variable maintenance costs and shorten their economic 

lives. These costs are not accounted for here; and hence the total system costs for the 

scenarios with expanded renewable generating capacity may be understated.        
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5.3.2  Weather, Load and Solar Patterns 

As the solar generation data is simulated using typical weather conditions, but the three 

load profiles are associated to three different weather patterns, there is a partial disconnect 

in the relationship between the solar generation and load data series. The use of similar 

weather conditions for creating a solar output profile might have changed the correlation 

between solar generation and demand for electricity in each year. For example, during the 

summer time, days with higher temperatures accompanied by less cloudy skies could 

increase the demand of electricity for air conditioning and the sunlight captured by solar 

panels to produced energy at the same time. In that case, solar power would have a greater 

impact on reducing the need for generation from non-solar resources to meet the load net 

of solar. Furthermore, a closer coincidence in daily patterns of solar generation and load 

might contribute to a reduction of the system peak load and the need for conventional 

resources. However, if the typical weather conditions had lower (higher) annual 

temperatures or solar irradiation levels compared to the weather conditions of each of the 

individual three years, the results might show a reduction (improvement) in the overall 

impacts of solar power in the system.  

5.3.3 Factors Affecting Capacity Value Calculation  

The method proposed to calculate the capacity value of solar power in the state does not 

capture the randomness of sudden disturbances of the electrical supply system. The 

capacity values estimated using this simplified approach without considering risk or 

adequacy calculations need to be carefully compared and validated against values 

calculated specifically for Indiana with a traditional system adequacy methodology. 

Moreover, the capacity values vary depending on the spatial distribution and dispersion of 

the solar resource with respect to the load it serves and the solar technologies. The 

consideration of these factors would refine the results reported in this analysis which only 

represent an approximated average values across zones and array types.  
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5.3.4  Transmission Line Constraints  

Additional investments in transmission infrastructure may be required to accommodate the 

integration of new solar and wind capacity, and these investments are not considered in 

this study. However, as more solar and wind power is added into electricity supply system, 

determining their potential impact on transmission costs and operational challenges 

becomes more relevant. For example, significant transmission investment costs and/or 

congestions could occur depending on the distance between solar plant sites’ locations and 

the loads they serve. The identification of these transmission impacts might also affect the 

choice of the most appropriate zone in the state and size for a new PV solar installation.     

5.3.5 Potential Environmental Impacts   

The use of solar and wind energy sources is expected to reduce the levels of natural gas 

and coal that are burned for generating electricity and the carbon dioxide (CO2) and other 

greenhouse gases (GHG) emission levels in the atmosphere. The levels of emissions from 

coal- and natural gas-burning power plants would also change due to the potential loss of 

operating efficiency of these units when following the load net of renewables. Because this 

study only considers a constant heat rate (a measure of the efficiency of a generator) for 

each technology type across scenarios, the results do not reflect or capture the impact of 

having reductions of efficiency in those power plants. Therefore, this study ignores the 

potential economic impacts of changes in the heat rates or the environmental implications 

of increasing the supply of renewable electricity generation from solar and wind in the 

Indiana’s electric power system. This means that the reduction in GHG emissions may not 

be as large as they would be if electricity from renewables replaced thermal electricity 

generation on a kWh per kWh basis. 

5.3.6 Geographic Diversity and Non-Interconnected Generation System  

The scope of this study is limited to Indiana and therefore treats its power system as being 

isolated from the rest of the regional power grid. However, an interconnected grid could 

have planning and operating benefits due to the potential access to additional power supply 
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resources located in geographically diverse regions. Accounting for solar and wind output 

generated outside the state could contribute to reducing the magnitude of the ramping 

events and the cost of managing the variability added by these resources to the load. 

Furthermore, due to the solar and wind power resource availability and time zone 

differences between states (e.g. Indiana and Illinois), the peak generation from solar and 

wind installations in each of these states would occur at different times. For example, there 

would be times when solar generation begins to drop in one state but peaks in another state, 

which would modify the magnitude and timing of their greatest contribution to reduce 

Indiana’s daily system peak load. Thus, considering solar and wind generation from other 

sites would change the levels of future capacity requirements and system costs identified 

in this study.  

5.4 Future Work 

This section suggests other possibilities, besides the ones covered in the caveats section, 

for future research work that could complement or improve the analysis of the impacts of 

integrating solar power into an electric supply system.  

Considering energy storage technologies or demand response (DR) programs in 

combination with solar power could improve the relative solar capacity value in Indiana.  

For example, the use of Direct Load Control (DLC) programs, that reduce customers’ 

electricity consumption during peak hours, could help to shift the time of the new system 

peak load to coincide with the solar generation peak time. This combination would increase 

the capacity credit of solar to meet the system peak load. Furthermore, the identified energy 

curtailment that occurs in our analysis at higher levels of solar and wind capacity would 

obviously create a potential opportunity for energy storage as a resource option within the 

system. A type of battery could store the energy generated from solar during the morning 

hours that usually are off-peak periods and make it available during on-peak hours when 

solar generation begins to decline which would improve the relative economics of solar 

capacity in the system.  

Future analysis could also incorporate different levels of uncertainty and risk for load 

demand and fuel costs. These model inputs could be affected by potential changes in the 
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weather, wholesale fuel markets and technology conditions, which will ultimately affect 

the levels of the capacity, generation and cost impacts in all the scenarios. For example, 

changes in weather conditions will not only affect the amount of electricity demanded in 

the future, but may also change the shape of the hourly load net of renewable generation 

profile. While changes in coal and natural gas prices due to competition and availability of 

more efficient and effective ways to extract these fossil fuels will directly modify the 

results of the unit dispatch process and therefore the variable costs of the system. Then, the 

cost effectiveness of solar generation would depend on the magnitude and direction of the 

changes observed on these inputs.  

Compliance with increasingly tighter environmental regulations makes it indispensable to 

quantify the environmental and economic impact of integrating solar and wind resources 

within the generation portfolio. Increasing capacity levels of renewable resources reduce 

the fossil fuel power plants generation needs and consequently the level of emissions of 

toxic emissions in the environment (e.g. carbon dioxide (CO2), nitrogen oxides (NOx), 

sulfur dioxide (SO2), Mercury (HG), etc.). A future study could determine the potential 

economic benefits of incurring investment costs from installing additional cleaner 

electricity generation resources such as wind and solar generation instead of costly 

environmental control equipment in existing thermal power plants. In general, stricter 

emission regulations and potentially higher cost of traded emission allowances would make 

solar and wind energy more economically attractive. 
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APPENDIX A. GAMS CODE FOR INDIANA PIECEWISE LINEAR 

APROXIMATION 

$onUNDF 

* Create a .gdx file from the Indiana.xlsx file 

$CALL GDXXRW U:\Indiana.xlsx par=p rng=A1:b8761 rdim=1 cdim=1 set=l rng=b1:b1 

cdim=1 

$GDXIN Indiana.gdx 

 

Set i number of knots per season (every 5 minutes) / 0*105120 /, 

    j number of hours per season /1*8760/, 

    u number of 5-minute periods per season / 1*105120 /, 

    l(*) SAM projects ; 

$LOAD  l 

 

*Import hourly data from Excel to GAMS 

parameter 

 p(j,*)  hourly SAM power output over interval u ; 

$LOAD p 

$GDXIN 

option limrow=0,limcol=0; 

p(j,l)=p(j,l)/1000000; 

option p:7; 

display p; 

 

*Allocate appropiate hourly data in each 5-minute period of each hour. 

parameter power5(u,l) Organized hourly Avg. of actual power output interval u; 

power5(u,l)= sum(j$(trunc((ord(u)-1)/12)+1 eq ord(j)),p(j,l)) ; 

option power5:5; 

power5(u,l)$(Not power5(u,l)) = EPS; 

display power5; 

 

parameter pl(j), 

          fl(i,l); 

*Linear 5-minute approximation model 

Variables 

 f(i)  Height at lattice point i 

 z     Derivative minimizing objective ; 

 

Equations 

 obj   Phony objective definition 

 ap(j) Average power on interval i is right ; 

*Objetive Function 

obj .. z =e= sum(i$(ord(i) gt 1), 

             sqr(-f(i-1)+f(i))) ; 
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*Constraint 

ap(j) .. sum(i$((ord(i)-1)/12 eq ord(j)), 

 f(i-12)+2*f(i-11)+2*f(i-10)+2*f(i-9)+2*f(i-8)+2*f(i-7)+2*f(i-6) 

+ 2*f(i-5)+2*f(i-4)+2*f(i-3)+2*f(i-2)+2*f(i-1)+f(i))/24 

 =e= pl(j) ; 

 

Model plm / obj,ap / ; 

Loop(l, 

     pl(j)=p(j,l); 

f.lo(i) = 0 ; 

f.up(i) = 2*smax(j,pl(j)) ; 

Solve plm using nlp minimizing z ; 

fl(i,l)=f.l(i); 

) ; 

display fl; 

 

*plin approximation 

parameter plin(u,l) Piecewise linear five-minute approximation ; 

plin(u,l) = sum(i$(trunc((ord(u)-1)/1)+1 eq ord(i)), 

  fl(i,l)*(1-(ord(u)-(ord(i)-1)*1)+.5)/1 

 + fl(i+1,l)*(ord(u)-(ord(i)-1)*1-.5)/1) ; 

option f:5:0:1; 

option plin:7:1:1; 

plin(u,l)$(Not plin(u,l)) = EPS; 

display plin ; 

 

*Create and display output table 

parameter smry(l,u,*) ; 

smry(l,u, 'j hour') = trunc((ord(u)+11)/12); 

smry(l,u,'5 min') = 1/24 + (ord(u) -1)/12 ; 

smry(l,u,'plin')  = plin(u,l) ; 

smry(l,u,'actual')= power5(u,l) ; 

smry(l,u,'diff')  = power5(u,l) - plin(u,l) ; 

option smry:7:1:1; 

display smry ; 

 

parameter plinwozeros(l,u,*); 

plinwozeros(l,u,'5 min')=smry(l,u,'5 min')$(smry(l,u, 'plin') ne 0); 

plinwozeros(l,u,'plin')=1000000*smry(l,u,'plin')$(smry(l,u, 'plin') ne 0); 

plinwozeros(l,u,'actual')=1000000*smry(l,u,'actual')$(smry(l,u, 'plin') ne 0); 

plinwozeros(l,u,'diff')=1000000*smry(l,u,'diff')$(smry(l,u, 'plin') ne 0); 

display plinwozeros; 

 

*Group data by month 

parameter jan(l,u,*); 
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jan(l,u,'plin')$(ord(u) le 8928)=plinwozeros(l,u,'plin')$(plinwozeros(l,u,'5 min') ge 0 and 

plinwozeros(l,u,'5 min') le 744) ; 

jan(l,u,'diff')$(ord(u) le 8928)=plinwozeros(l,u,'diff')$(plinwozeros(l,u,'5 min') ge 0 and 

plinwozeros(l,u,'5 min') le 744); 

option jan:7:1:1; 

display jan; 

execute_unload "U:\January\janxls.gdx"; 

execute'gdxxrw.exe U:\January\janxls.gdx o=U:\January\Jan.xlsx par=jan'; 
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APPENDIX B. GAMS CODE FOR INDIANA 5-MINUTE DATA 

SIMULATION 

 

$call gdxxrw U:\January\knoyjanplin.xlsx set=s rng=a2:a3472 rdim=1 set=i rng=b1:c1 

cdim=1 par=data rng=A1:C3472 rdim=1 cdim=1 

$gdxin knoyjanplin.gdx 

 

Sets      t     Total 5_minutes observations in SAM projects data for this month before 

removing zeros /1*8928/ 

          s(*)  Indexed Knoy 5-minute data with no zeros in plin 

          i(*)  Labels of the two input columns 'plin' and 'diff' 

          copy / reg1*reg8 / ; 

$load s i 

 

parameter data(s,*) Includes input Knoy data with no zeros for the month; 

$load data 

option data:7; 

display data; 

*Execute_load 'data', fin=data; 

parameter fin(s,*) Rename 'data' parameter to 'fin' with only plin data; 

fin(s,'plin') = data(s,'plin') ; 

option fin:7; 

display fin; 

*Create parameter plin1 with plin values to create the bins 

parameter plin1(s); 

plin1(s)=fin(s,'plin'); 

option plin1:7; 

display plin1; 

*Create specific # of bins with specific range 

alias (s,ss,sss) ; 

sets bin(s) 

     map(s,ss) Observation s is in bin ss ; 

scalar 

     noinbin Number of obs in each bin /40/ 

     bigbin  Last bin is bigger to include more obs than 40 

     nobins  Number of bins; 

nobins = trunc(card(s)/noinbin) ; 

bigbin = card(s) - noinbin*(nobins - 1) ; 

bin(s)$(ord(s) le nobins) = yes ; 

display noinbin,bigbin,nobins ; 

 

*Allocate data in plin1 to each bin 

execute_unload "rank_in.gdx", plin1 ; 

execute 'gdxrank rank_in.gdx rank_out.gdx' ; 
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parameter plinindex(s) ; 

execute_load "rank_out.gdx",plinindex=plin1 ; 

option plinindex:2:0:1; 

plinindex(s)$(Not plinindex(s)) = EPS; 

plin1(s)$(Not plin1(s)) = EPS; 

display plinindex ; 

parameter result(s,*) ; 

result(s,'plin1') = plin1(s) ; 

result(s,'position') = plinindex(s) ; 

 

*Indentify the bin location of each obs. 

map(s,ss)$(bin(ss) and ord(ss) lt card(bin)) = 

  yes$(plinindex(s) gt 40*(ord(ss)-1) and plinindex(s) le 40*ord(ss)); 

map(s,ss)$(bin(ss) and ord(ss) eq card(bin)) = 

  yes$(plinindex(s) gt 40*(ord(ss)-1)); 

display result,map; 

*Put Knoy "diff" values in corresponding bin 

fin(s,'diff') = sum(ss,ord(ss)$map(s,ss)) ; 

fin(s,'diff') = data(s,'diff') ; 

display fin ; 

parameter 

 diffs(s,ss) Difference s between plin and observed in bin ss 

 bpoint      Bin position pointer; 

loop(ss, 

 bpoint = 1 ; 

 loop(sss, 

  if (map(sss,ss), 

   diffs(s,ss)$(ord(s) eq bpoint) = fin(sss,'diff') ; 

   bpoint = bpoint+1 ; 

  ) ; 

 ) ; 

) ; 

option diffs:7; 

display diffs ; 

 

* Load 5-minute "plin" and "diff" SAM project's data with no zeros in plin for each month 

$call gdxxrw U:\January\Jan.xlsx set=m rng=b2:b3760 rdim=1 set=n rng=c1:d1 cdim=1 

par=data1 rng=B1:D3760 rdim=1 cdim=1 

$gdxin Jan.gdx 

 

Sets      m(*)  Indexed data with no zeros in plin 

          n(*)  Labels of the two input columns 'plin' and 'diff'; 

$load m n 

 

parameter data1(m,*) Includes input data for the month; 

$load data1 
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option data1:7; 

display data1; 

parameter hourly(m,*) SAM project plin data ; 

hourly(m,'plin') = data1(m,'plin'); 

*Found the upper bounds of bins determined using plin Knoy data 

parameter 

cuts(ss) Upper cutoff for plin for bin ss ; 

cuts(ss)$(ord(ss) le nobins) = smax(s$map(s,ss),fin(s,'plin')) ; 

cuts(ss)$(ord(ss) eq nobins) = inf; 

display cuts ; 

 

scalar 

    Knoyw    Max Knoy plin value for each month 

    Projectw Max Indiana plin value for each month 

    KPratio  Ratio to scale down Indiana data to Knoy; 

Knoyw = smax(s,fin(s,'plin')); 

Projectw=smax(m,hourly(m,'plin')); 

KPratio = Projectw/Knoyw; 

display Knoyw, Projectw, KPratio; 

 

*Scale down the original plin SAM projects data to be about the same scale than Knoy plin 

parameter hourlyscal(m,*) SAM project plin data ; 

hourlyscal(m,'plin')=hourly(m,'plin')/KPratio; 

display fin, hourlyscal; 

 

parameter hourlyfin(copy,m,*) Data set with new diff and rescaled up SAM project data ; 

 

*Identify bins, draw from distribution out of identified bin and 

*then add random deviations to Indiana data 

 

scalar random Random number for drawing from the distribution of diffs ; 

parameter finaldata(copy,t,i); 

loop(copy, 

loop(m, 

 loop(ss$bin(ss), 

  if (hourlyscal(m,'plin') le cuts(ss) and hourlyscal(m,'plin') gt cuts(ss-1), 

   if (ord(ss) lt card(bin), 

    random = uniform(0,noinbin) ; 

    hourlyfin(copy,m,'sim') = hourlyscal(m,'plin') 

     + sum(sss$(ord(sss) le noinbin and 

      random le ord(sss)+1 and random gt ord(sss)),diffs(sss,ss)) ; 

    hourlyfin(copy,m,'rand') = random ; 

    hourlyfin(copy,m,'diff') = sum(sss$(ord(sss) le noinbin and 

      random le ord(sss)+1 and random gt ord(sss)),diffs(sss,ss)) ; 

   else 

    random = uniform(0,bigbin) ; 
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    hourlyfin(copy,m,'sim') = hourlyscal(m,'plin') 

     + sum(sss$(ord(sss) le bigbin and 

      random le ord(sss)+1 and random gt ord(sss)),diffs(sss,ss)) ; 

    hourlyfin(copy,m,'rand') = random ; 

    hourlyfin(copy,m,'diff') = sum(sss$(ord(sss) le bigbin and 

      random le ord(sss)+1 and random gt ord(sss)),diffs(sss,ss)) ; 

   ) ; 

  ) ; 

 ) ; 

) ; 

 

*Rescale data to Indiana level 

hourlyfin(copy,m,'sim')$(hourlyfin(copy,m,'sim') lt 0) = 0 ; 

hourlyfin(copy,m,'plin')=hourlyscal(m,'plin')*KPratio; 

hourlyfin(copy,m,'diff')=hourlyfin(copy,m,'diff')*KPratio; 

hourlyfin(copy,m,'sim')=hourlyfin(copy,m,'sim')*KPratio; 

option hourlyfin:8 ; 

hourlyfin(copy,m,'plin')$(Not hourlyfin(copy,m,'plin')) = EPS; 

hourlyfin(copy,m,'diff')$(Not hourlyfin(copy,m,'diff')) = EPS; 

hourlyfin(copy,m,'sim')$(Not hourlyfin(copy,m,'sim')) = EPS; 

hourlyfin(copy,m,'rand')$(Not hourlyfin(copy,m,'rand')) = EPS; 

option hourlyfin:7; 

display hourlyfin ; 

 

*Merge non-zero plin data with zeros 

finaldata(copy,t,i)=0; 

loop(t, 

    loop(i, 

         loop(m, 

         finaldata(copy,t,i)$(t.val EQ m.val)=hourlyfin(copy,m,i) 

         ); 

       ); 

     ); 

 

finaldata(copy,t,i)$(NOT finaldata(copy,t,i))=EPS; 

); 

option finaldata:7; 

display finaldata;  
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APPENDIX C. GAMS CODE FOR BASE CASE CAPACITY 

EXPASION AND COMMITMENT/DISPACTH MODEL 

*2011 5-minute load scaled to 2035, solar and generation data 

option limrow=0 ; 

option limcol=0 ; 

option optcr=0.01, optca=10 ; 

option iterlim=1000000,reslim=1000000 ; 

option solprint=off ; 

$onsymlist 

$call gdxxrw U:\InputData2011.xlsx set=t rng=a2:a105121 rdim=1 set=s rng=b1:d1 

cdim=1 par=data10 rng=A1:D105121 rdim=1 cdim=1 

$gdxin InputData2011.gdx 

 

Sets      t(*)  Total 5_minutes observations in a year 

          s(*)  Labels of the input columns 'load1x' 'solar' and 'wind1x' 

          h     Hour index -- allow for leap year / 1*8784 /; 

Alias (t,tt),(h,hh); 

$load t s 

parameter data11(t,*) Data input parameter. Units (MW); 

$load data11 

option data11:7; 

Alias (t,tt) ; 

 

*Create parameters for load, solar and wind all in MW 

Set      k/yr11/; 

parameter load(t,k) 

          load11(t) 

          solar(t) 

          wind(t,k) 

          wind11(t); 

load(t,'yr11') = data11(t,'load11'); 

solar(t)= data11(t,'solar'); 

wind(t,'yr11') = data11(t,'wind11'); 

option load:7; 

 

Set       i   Types of generation /Small_Coal 

Med_Coal, Large_Coal, IGCC, Oil, NGST, Small_NGCC 

Large_NGCC, Small_NGCT, Med_NGCT, Large_NGCT, 

Hydro, LFG, Nuclear, Solar, Wind, base, peak, newWind, newSolar/ 

          ii(i) Generation technologies / Small_Coal 

Med_Coal, Large_Coal, IGCC, Oil, NGST, Small_NGCC 

Large_NGCC, Small_NGCT, Med_NGCT, Large_NGCT, 

Hydro, LFG, Nuclear, base, peak/ 

          r   Indiana existing generation technologies /Small_Coal 
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Med_Coal, Large_Coal, IGCC, Oil, NGST, Small_NGCC 

Large_NGCC, Small_NGCT, Med_NGCT, Large_NGCT, 

Hydro, LFG, Nuclear, Solar, Wind, extbase, extpeak/ 

          day           Loop the 365 days of the year /1*365/ 

          window(t)     All t's of each 3-day period 

          hwindow(h)    All h's of each 3-day period 

          subwindow(t)  t's in the middle day of the 3-day period 

          hsubwindow(h) h's in the middle day of the 3-day period ; 

Table units(*,*) 

                Number      Capacity       Total_Capacity    Summer_Adjust 

Small_Coal        17          102.08          1735.35          0.90 

Med_Coal          17          400.52          6808.83          0.90 

Large_Coal        9           680.29          6122.62          0.90 

IGCC              3           258.19           774.57          0.74 

Oil               23           18.68           429.73          0.91 

NGST              3           188.07           564.21          0.95 

Small_NGCC        7            75.54           528.77          0.93 

Large_NGCC        7           224.99          1574.92          0.93 

Small_NGCT        21           41.09           862.86          0.81 

Med_NGCT          26           72.57          1886.85          0.81 

Large_NGCT        8           108.72           869.78          0.81 

Hydro             51            1.85            94.58          0.64 

LFG               74            1.13            83.62          0.93 

Nuclear           2           948.04          1896.08          0.91 

Base 

Peak ; 

Set 

 uno      Unit number / 1*74 / 

 u(ii,uno) Mapping of unit numbers to types ; 

u(ii,uno) = yes$(ord(uno) le units(ii,'Number')) ; 

display u ; 

parameter capcost(ii)     Annualized capital cost by generation technology (2016 $ per 

MW per Yr) 

          varcost(ii)     Variable cost by type of generation (2016 $ per MWh) 

          sumrcap(r)      Installed summer capacity levels by type of generation technology 

          ttlsumcap       Total installed summer capacity 

          extsumcap(r)    Total installed summer capacity levels by baseload and peaking 

generation 

          braik           braikeven hour at baseload-peaking capacity limit 

          capbraik        Capacity corresponding to braikeven hour baseload-peaking 

          loadnsw(t)      5-min load net of 5-min solar and wind generation 

          loadnsw2(t)     Copy of loadns to be modified 

          ldcnsw(t)       Load net of solar and wind duration curve 

          capldcnsw(ii)   Capacity needed by generation type to meet load net of solar and 

wind 

          unewcap(ii)     Aprox of number of new units needed by type 
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          newcap(ii)      Lumped new capacity needed by generation type to meet load net of 

solar and wind 

          ttlcaptype(ii)  Capacity by type of generation: Installed plus new capacity available 

to meet load net of solar and wind 

          totalcap        Total capacity includes new and existing 

          namecap(ii)     Installed Nameplate capacity levels by type of generation 

technology 

          minload(ii)     Min load rates(% of full load) 

          midlcap(ii)     Capacity between Max load (Nameplate) capacity and Min load 

capacity 

          ramprate(ii)    Ramp rates (fraction of nameplate capacity per 5-min) by generation 

type for existing capacity 

          rmpavlexity(ii) Ramping capacity available from nameplate capacity per 5-min by 

generation type 

          finexramp(ii)   Ramping capacity available per 5-min by generation type (lowest 

value between midlcap and rmpavlexity) 

          rampavlexi      Total ramping capacity available per 5-min (lowest value between 

midlcap and rmpavlexity) 

          rampavladd(ii)  Additional capacity available for ramping per 5-min 

          ttlrampavai     Total capacity available for ramping per 5-min 

          difflnsw(t)     Used to find 5-min difference series or 5-minute drop or increase in 

the Load net of solar and wind 

          rampupreq       Ramping UP requirements per 5-min (greatest positive diff period-

to-period Load net of solar and wind) 

          rampdwnreq      Ramping DOWN requirements per 5-min (greatest negative diff 

period-to-period Load net of solar and wind) 

          addrampup       Additional ramping UP capacity needed 

          addrampdwn      Additional ramping DOWN capacity needed 

          ramplim(ii)     Exisiting plus New Units ramping limits for period t 

          upprlim         t upper limit of day d 

          lwrlim          t lower limit of day d 

          windcrtlmnt(t,k) Level of wind cutailment 

          solcrtlmnt(t,k)  Level of solar curtailment 

          hourly_startcost(h,ii) Results hourly start-up costs by i 

          total_startcost(ii)    Results total start-up costs per year by i 

          total_gentype(*,k)     Results total generation per year by i 

          total_varcost(ii,k)    Results total variable cost per year by i 

          total_capcost(ii,k)    Results total capita cost per year by i 

          total_genwind          Results total wind generation per year 

          total_gensolar         Results total solar generation per year 

          total_capacity(ii,k)   Results total capacity per year by i 

          maxgentype(*,k)        Resukts max generation by i 

          objvalue(*)    Objective function value 

          bestsol(*)     Estimate of the best possible solution for a mixed-integer model 

          gap(*)         Annual calculation gap 

          exetime(day)   Elapsed time it took to execute a solve statement in total 
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          solvtime(day)  Elapsed time taken by the solver only 

          exealgo(day)   Elapsed time it took to execute the solve algorithm; 

Scalar    gapyear; 

Table minupdown(ii,*)    Minimum up and down time by unit class in hours 

                MinUp    MinDown 

Small_Coal        6        4 

Med_Coal          6        4 

Large_Coal        6        4 

IGCC              4        2 

Oil               4        3 

NGST              5        3 

Small_NGCC        4        2 

Large_NGCC        4        2 

Small_NGCT        2        2 

Med_NGCT          2        2 

Large_NGCT        2        2 

Hydro             0        0 

LFG               0        0 

Nuclear          59       21 

Base              4        2 

Peak              2        2 ; 

*Capital cost (2016$/MW/yr) only for new units because this cost is assumed to be sunk 

for existing 

capcost("base") = 77531 ; 

capcost("peak") = 48976; 

*For example: Generic Variable cost (ful + O&M) by type of generation (2016 $ per 

MWh) for installed and new units 

varcost("base") = 28.93; 

varcost("peak") = 52.60; 

varcost("Small_Coal") = 27; 

varcost("Med_Coal") = 27; 

varcost("Large_Coal") = 27; 

varcost("IGCC") = 27; 

varcost("Oil") = 290; 

varcost("NGST") = 40; 

varcost("Small_NGCC") = 40; 

varcost("Large_NGCC") = 40; 

varcost("Small_NGCT") = 73; 

varcost("Med_NGCT") = 73; 

varcost("Large_NGCT") = 73; 

varcost("Hydro") = 3; 

varcost("LFG") = 25; 

varcost("Nuclear") = 8; 

*Existing Summer capacity by generation type derated using FOR estimates 

sumrcap(r) = units(r,'Total_Capacity')*units(r,'summer_adjust') ; 

ttlsumcap = sum(r,sumrcap(r)); 
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extsumcap("extpeak") = sumrcap("Oil") + sumrcap("Small_NGCT") 

 + sumrcap("Med_NGCT") + sumrcap("Large_NGCT"); 

extsumcap("extbase") = ttlsumcap - extsumcap("extpeak"); 

display ttlsumcap, extsumcap; 

*     Ramping resources 

*Exisiting Nameplate capacity by generation type already derated using FOR estimates 

namecap(ii) = units(ii,'capacity') ; 

minload("Small_Coal") = 0.37; 

minload("Med_Coal") = 0.37; 

minload("Large_Coal") = 0.37; 

minload("IGCC") = 0.60; 

minload("Oil") = 0.33; 

minload("NGST") = 0.40; 

minload("Small_NGCC") = 0.40; 

minload("Large_NGCC") = 0.40; 

minload("Small_NGCT") = 0.43; 

minload("Med_NGCT") = 0.43; 

minload("Large_NGCT") = 0.43; 

minload("Hydro") = 0; 

minload("LFG") = 0; 

minload("Nuclear") = 0.34; 

minload("base") = 0.40; 

minload("peak") = 0.43; 

*Ramp rates for exisitng technologies 

ramprate("Small_Coal") = 0.19; 

ramprate("Med_Coal") = 0.19; 

ramprate("Large_Coal") = 0.19; 

*IGCC ramping rate same as NGCC rate 

ramprate("IGCC") = 0.29; 

ramprate("Oil") = 0.67; 

ramprate("NGST") = 0.33; 

ramprate("Small_NGCC") = 0.29; 

ramprate("Large_NGCC") = 0.29; 

ramprate("Small_NGCT") = 0.68; 

ramprate("Med_NGCT") = 0.68; 

ramprate("Large_NGCT") = 0.68; 

ramprate("Hydro") = 1; 

ramprate("LFG") = 1; 

ramprate("Nuclear") = 0.26; 

*NGCC ramp rate used for baseload capacity additions 

ramprate("base") = ramprate("Large_NGCC"); 

*NGCT ramp rate used for peaking capacity additions 

ramprate("peak") = ramprate("Med_NGCT"); 

 

**+    Economic Commitment/Dispatch      **+ 

Equations cost            Objective function min total cost 
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          engry(t)        Aggregated energy allowed to be produced in each period t 

          genmax(ii,t)    Maximum generation alowed by i in period t 

          genmin(ii,t)    Minimum generation alowed by i in period t 

          rampup(ii,t)    Constraint ramping up limit for type of technology in period t 

          rampdwn(ii,t)   Constraint ramping down limit for type of technology in period t 

          upmin(ii,uno,h) Constraint minimum up time of unit i 

          dwnmin(ii,uno,h)Constraint minimum down time of unit i 

          onoffdef(ii,uno,h)Contraint to guaratee consistency with bstatus and switch 

variables; 

Variables totalcost       Aggregated cost of meeting projected annual load ; 

Positive Variables 

          gen(ii,t)       Generation produced by unit ii in period t 

          sgen(t)         Solar generation in period t 

          wgen(t)         Wind generation in period t 

          switchon(ii,uno,h)  Start-up equals 1 when i is switched on 

          switchoff(ii,uno,h) Start-up equals 1 when i is switched off; 

switchon.up(ii,uno,h)  = 1 ; 

switchoff.up(ii,uno,h) = 1 ; 

Binary Variable   bstatus(ii,uno,h) Commitment status of unit uno in hour h; 

bstatus.up(ii,uno,h) = 1 ; 

parameter cstartup(ii) Startup costs in 2016 dollars per MW capacity 

/Small_Coal  107.08, Med_Coal 82.53, Large_Coal 57.97, IGCC 43.79, 

Oil 0, NGST 44.15, Small_NGCC 43.79, Large_NGCC 43.79, Small_NGCT 55.32, 

Med_NGCT  55.32, Large_NGCT   55.32, Hydro 0, LFG 0, Nuclear 0, 

base 43.79, peak 55.32 /   ; 

 

cost..      totalcost =e= 

 sum(t$window(t), 

 sum(ii,(varcost(ii)/12)*gen(ii,t))) 

* Startup costs 

 + sum(h$(hwindow(h)), 

   sum((ii,uno)$u(ii,uno), 

   switchon(ii,uno,h)*units(ii,'Capacity')*cstartup(ii))); 

engry(t)$window(t).. 

            sum(ii,gen(ii,t)) + sgen(t) + wgen(t) =e= load(t,"yr11"); 

 

set hmap(t,h) Mapping from five minute intervals to hours ; 

hmap(t,h) = yes$(ord(t) ge (ord(h)-1)*12 + 1 and ord(t) le ord(h)*12) ; 

 

genmax(ii,t)$window(t).. 

gen(ii,t)=l=(namecap(ii)+newcap(ii))*sum(uno$u(ii,uno), 

 sum(h$hmap(t,h),bstatus(ii,uno,h))); 

genmin(ii,t)$window(t).. 

gen(ii,t)=g= 

 ((namecap(ii)+newcap(ii))*minload(ii))*sum(uno$u(ii,uno), 

 sum(h$hmap(t,h),bstatus(ii,uno,h))); 
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rampup(ii,t)$(window(t) and window(t-1)).. 

gen(ii,t)-gen(ii,t-1) =l= 

 ramprate(ii)*(namecap(ii)+newcap(ii))*sum(uno$u(ii,uno), 

 sum(h$hmap(t,h),bstatus(ii,uno,h))); 

rampdwn(ii,t)$(window(t) and window(t-1)).. 

gen(ii,t)-gen(ii,t-1) =g= 

 -ramprate(ii)*(namecap(ii)+newcap(ii))*sum(uno$u(ii,uno), 

 sum(h$hmap(t,h),bstatus(ii,uno,h))); 

onoffdef(ii,uno,h)$(hwindow(h) and u(ii,uno) 

 and minupdown(ii,'minup') gt 0 and minupdown(ii,'mindown') gt 0).. 

switchon(ii,uno,h) - switchoff(ii,uno,h) =e= -bstatus(ii,uno,h-1) + 

 bstatus(ii,uno,h) ; 

upmin(ii,uno,h)$(hwindow(h) and u(ii,uno)) .. 

 bstatus(ii,uno,h) =g= 

 sum(hh$(ord(hh) ge ord(h) - minupdown(ii,'minup') and 

  ord(hh) le ord(h)), 

 switchon(ii,uno,hh)) ; 

dwnmin(ii,uno,h)$(hwindow(h) and u(ii,uno)) .. 

 1 - bstatus(ii,uno,h) =g= 

 sum(hh$(ord(hh) ge ord(h) - minupdown(ii,'mindown') and 

  ord(hh) le ord(h)), 

 switchoff(ii,uno,hh)) ; 

 

model meritmod /cost 

                engry 

                genmax 

                genmin 

                rampup 

                rampdwn 

                onoffdef 

                upmin,dwnmin/ ; 

meritmod.solvelink=0 ; 

 

**  Capacity Expansion Planning   **+ 

*Calculation of braikeven hour period where technologies total generation costs functions 

intersects 

braik = round((capcost("peak")- capcost("base"))/( varcost("base")- varcost("peak"))); 

*Construct load and load net of solar and wind duration curves 

parameter loadnsw_index(t); 

parameter loadnsw_index2(t); 

parameter ldcnsw(t); 

parameter switchlog(*,*,*),switchlog2(*,*,*,*); 

parameter gentab(t,*) ; option gentab:0 ; 

* Create load net of solar and wind 

loop(k, 

loadnsw(t) = load(t,k) - solar(t) - wind(t,k); 
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loadnsw2(t)= loadnsw(t); 

execute_unload "rank_in.gdx", loadnsw; 

execute 'gdxrank rank_in.gdx rank_out.gdx'; 

execute_load "rank_out.gdx", loadnsw_index=loadnsw; 

loadnsw_index2(t) = card(t) - loadnsw_index(t) +1; 

* Create load net of solar and wind duration curve 

ldcnsw(t + (loadnsw_index2(t)- ord(t))) = loadnsw(t); 

* Determine optimal capacity levels 

loop(t , 

capbraik $(ord(t) eq 12*braik) = ldcnsw(t); 

); 

* Total capacity requirements for load and load net of solar and wind curves 

capldcnsw("peak") = max(0,ldcnsw("1") - capbraik); 

capldcnsw("base") = max(0,capbraik); 

* New capacity requirements aproximated to new plants' capacity 

unewcap("base") = ((max(0, capldcnsw("base") - extsumcap("extbase")))*1.0372)/429; 

unewcap("peak") = ((max(0, capldcnsw("peak") - extsumcap("extpeak") - max(0, 

extsumcap("extbase") - capldcnsw("base"))))*1.149)/237; 

newcap("base") = (round(unewcap("base")+0.499))*429; 

newcap("peak") = (round(unewcap("peak")+0.499))*237; 

units('base','number')   = round(unewcap("base")+0.499) ; 

units('peak','number')   = round(unewcap("peak")+0.499) ; 

units('base','capacity') = 429 ; 

units('peak','capacity') = 237 ; 

u('base',uno) = yes$(units('base','number') ge ord(uno)) ; 

u('peak',uno) = yes$(units('peak','number') ge ord(uno)) ; 

* Total capacity by generation type for economic dispatch 

ttlcaptype("peak") = extsumcap("extpeak") + newcap("peak"); 

ttlcaptype("base") = extsumcap("extbase") + newcap("base"); 

totalcap = ttlcaptype("base") + ttlcaptype("peak"); 

display capbraik,capldcnsw,unewcap,newcap,ttlcaptype,totalcap,units; 

 

**+**+*     Ramping resources  **+**+ 

*Load available of capacity (=Nameplate-Min load) by generation type 

loop(ii, 

midlcap(ii) = (namecap(ii) - (namecap(ii)*minload(ii)))*units(ii,'number'); 

); 

* Available ramping capacity from nameplate 

loop(ii, 

rmpavlexity(ii) = (namecap(ii)*units(ii,'number'))*ramprate(ii); 

); 

*Ramping resources availability per 5-minute period 

loop(ii, 

finexramp(ii) = min(rmpavlexity(ii),midlcap(ii)); 

); 

rampavlexi = sum(ii,min(rmpavlexity(ii),midlcap(ii))); 
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*Additional units 

rampavladd("peak") = ramprate("peak")*newcap("peak"); 

rampavladd("base") = ramprate("base")*newcap("base"); 

ttlrampavai = rampavladd("base") + rampavladd("peak") + rampavlexi; 

*Ramping requirements 

difflnsw(t)$(ord(t) le 105119) = loadnsw(t+1)-loadnsw(t); 

*Find max ramp up and down values 

rampupreq = smax(t,difflnsw(t)); 

rampdwnreq = smin(t,difflnsw(t)); 

*Additional ramping resources 

addrampup = rampupreq - ttlrampavai; 

addrampdwn = - rampdwnreq - ttlrampavai; 

ramplim(ii) = rmpavlexity(ii) + rampavladd (ii); 

gen.lo(ii,t) = 0; 

gen.up(ii,t) = (namecap(ii) + newcap(ii))*units(ii,'number') ; 

sgen.lo(t) = 0; 

sgen.up(t) = solar(t); 

wgen.lo(t) = 0; 

wgen.up(t) = wind(t,"yr11"); 

display difflnsw, midlcap, rmpavlexity, rampavlexi, finexramp, rampavladd, ttlrampavai, 

rampupreq, rampdwnreq, addrampup, addrampdwn; 

 

**+  Run Economic Dispatch Model   **+ 

loop(day$(ord(day) le 364), 

*option solprint=on ; 

lwrlim = (ord(day)-1)*288 + 1; 

upprlim = lwrlim + 288*3 - 1 ; 

window(t) = yes$(ord(t) ge lwrlim and ord(t) le upprlim) ; 

hwindow(h) = yes$(12*(ord(h) - 1) + 1 ge lwrlim and 12*(ord(h) - 1) + 1 le upprlim) ; 

subwindow(t) = yes$(ord(t) ge lwrlim + 288$(lwrlim ne 1) 

  and ord(t) le upprlim - 288$(upprlim ne 288*365)) ; 

hsubwindow(h) = yes$(lwrlim/12 + 24$(lwrlim ne 1) le ord(h) 

  and upprlim/12 - 24$(upprlim lt 288*365) ge ord(h)) ; 

display lwrlim,upprlim,window,hwindow,subwindow,hsubwindow ; 

option mip=cplex ; 

if (ord(day) ge 364, option solprint=on); 

solve meritmod using mip minimizing totalcost; 

windcrtlmnt(t,k)$window(t) = wind(t,"yr11")- wgen.l(t); 

solcrtlmnt(t,k)$window(t) =  solar(t)- sgen.l(t); 

maxgentype(ii,k) = smax(t,gen.l(ii,t)); 

display lwrlim,upprlim, hsubwindow ; 

objvalue(day)=meritmod.objVal; 

bestsol(day)=meritmod.objEst; 

gap(day)=objvalue(day)-bestsol(day); 

exetime(day)=meritmod.etSolve; 

solvtime(day)=meritmod.etSolver; 
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exealgo(day)=meritmod.etAlg; 

loop(h$hsubwindow(h), 

  switchlog(h,"status",ii)=sum(uno,bstatus.l(ii,uno,h)); 

  switchlog2(h,ii,uno,"switchon")=switchon.l(ii,uno,h); 

  switchlog2(h,ii,uno,"switchoff")=switchoff.l(ii,uno,h); 

) ; 

loop(tt$((ord(day) eq 1 and ord(tt) le 288) or subwindow(tt) 

         or (ord(day) eq 365 and ord(tt) ge 364*288)), 

  gentab(tt,ii) = gen.l(ii,tt) ; 

  gentab(tt,'wind') = wgen.l(tt) ; 

  gentab(tt,'solar') = sgen.l(tt) ; 

  gentab(tt,'load') = load(tt,"yr11") ; 

) ; 

* Now fix the bstatus for days prior to the current window. 

bstatus.fx(ii,uno,h)$(ord(h) le (lwrlim-1)/12 + 24)  = bstatus.l(ii,uno,h) ; 

); 

) ; 

switchlog(h,"status",ii)$((ord(h) le 8760) and (Not switchlog(h,"status",ii))) = EPS; 

display switchlog,switchlog2 ; 

gentab(tt,ii)$((ord(tt) le 105120) and (Not gentab(tt,ii))) = EPS; 

gentab(tt,'wind')$((ord(tt) le 105120) and (Not gentab(tt,'wind'))) = EPS; 

gentab(tt,'solar')$((ord(tt) le 105120) and (Not gentab(tt,'solar'))) = EPS; 

gentab(tt,'load')$((ord(tt) le 105120) and (Not gentab(tt,'load'))) = EPS; 

display gentab ; 

 

**+  Display Results  +** 

parameter switchlog2F(h,ii); 

switchlog2F(h,ii)=(sum(uno,switchlog2(h,ii,uno,"switchon"))); 

hourly_startcost(h,ii) = (switchlog2F(h,ii)*cstartup(ii)); 

total_startcost(ii) =  (sum(h,switchlog2F(h,ii)*cstartup(ii))); 

*Total Generation by technology type in (MW/h) 

total_gentype(ii,k) =  sum(tt,gentab(tt,ii)/12); 

total_gentype('wind',k) =  sum(tt,gentab(tt,'wind')/12); 

total_gentype('solar',k) =  sum(tt,gentab(tt,'solar')/12); 

*Total Load in (MW) 

total_gentype('load',k) =  sum(tt,gentab(tt,'load')/12); 

*Total Variable cost by technology type in (2016$) 

total_varcost(ii,k) = sum(tt,gentab(tt,ii)*(varcost(ii)/12)); 

*Total Capacity in the system 

total_capacity(ii,k) = (namecap(ii) + newcap(ii))*units(ii,'number'); 

*Maximum generation by technology type 

maxgentype(ii,k) = smax(tt,gentab(tt,ii)); 

maxgentype('wind',k) = smax(tt,gentab(tt,'wind')); 

maxgentype('solar',k) = smax(tt,gentab(tt,'solar')); 

*Total annual gap 

gapyear = sum(day,gap(day)); 
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option total_startcost:3:0:1; 

display windcrtlmnt,solcrtlmnt,hourly_startcost,total_startcost,total_gentype, 

total_varcost, total_capacity,maxgentype; 

display objvalue,bestsol,gap,gapyear,exealgo,exetime,solvtime; 
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